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Abstract

Algorithmically designed reward functions can influence groups of learning agents
toward measurable desired sequential joint behaviours. Influencing learning agents
toward desirable behaviours is non-trivial due to the difficulties of assigning credit
for global success to the deserving agents and of inducing coordination. Quantifying
joint behaviours lets us identify global success by ranking some behaviours as more
desirable than others. We propose a real-valued metric for turn-taking, demonstrating
how to measure one sequential joint behaviour. We describe how to identify the
presence of turn-taking in simulation results and we calculate the quantity of turn-
taking that could be observed between independent random agents. We demonstrate
our turn-taking metric by reinterpreting previous work on turn-taking in emergent
communication and by analysing a recorded human conversation. Given a metric,
we can explore the space of reward functions and identify those reward functions
that result in global success in groups of learning agents. We describe ‘medium
access games’ as a model for human and machine communication and we present
simulation results for an extensive range of reward functions for pairs of Q-learning
agents. We use the Nash equilibria of medium access games to develop predictors for
determining which reward functions result in turn-taking. Having demonstrated the
predictive power of Nash equilibria for turn-taking in medium access games, we focus
on synthesis of reward functions for stochastic games that result in arbitrary desirable
Nash equilibria. Our method constructs a reward function such that a particular joint
behaviour is the unique Nash equilibrium of a stochastic game, provided that such
a reward function exists. This method builds on techniques for designing rewards
for Markov decision processes and for normal form games. We explain our reward
design methods in detail and formally prove that they are correct.

Keywords: multi-agent systems, multi-agent reinforcement learning, decentralised systems,
resource allocation, turn-taking, Nash equilibria, emergent behaviour, reward functions, reward
design, Markov decision processes, Markov chains.
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Nomenclature

‘Agent’ An active goal-directed entity. While an agent may be a person or an animal,
we refer to agents with the pronoun ‘it’ because we are mostly concerned with
artificial agents.

‘Multi-agent system’ A set of related agents where each agent’s actions may affect
the other agents.

N The set of agents.

n A symbol to represent an agent; n is an element of N , the set of agents.

m An alternative agent symbol; m is an element of N , the set of agents.

t A discrete time index.

Γ A normal form game: in a single unrepeated instant each agent selects a
probability distribution over its actions and receives a reward that depends on
the action probability distributions of all agents.

G A stochastic game: for an indefinite number of time steps, each agent selects
an action based on the current state, then the state changes based on the agents’
actions & chance, and each agent receives a reward that depends on the agents’
actions and the state transition.

‘Nash equilibrium’ A joint agent policy such that no agent can increase its expected
payoff by unilaterally changing its policy.

An The set of actions of agent n.

an One of agent n’s actions, an element of An.

A The set of joint actions of a group of agents, A = ×n∈N An.

a A joint action, made up of an action from each agent in an understood set of
agents, a ∈ A.

a−n A joint action, made up of an action from each agent in an understood set of
agents except agent n, a−n ∈ ×m∈N ,m 6=nAm. Note that a = (an, a−n).
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A−n The set of possible values for a−n, that is ×m∈N ,m 6=nAm.

πn Agent n’s policy, a time-varying mapping between agent n’s state (if agent n
has state) and a probability distribution over agent n’s actions.

ε An agent’s exploration amount. In an ε-greedy exploration policy, ε is the
probability that an agent will take a random ‘exploratory’ action rather than
the best known ‘greedy’ action at any time step.

S A set of states.

T A state transition function.

γ An agent’s discount factor, which is a measure of how much more it prefers a
reward at time t to that same reward at the later time of t + 1.

Rn(t) The value of agent n’s reward function at time t. A reward function is a real-
valued indication of an agent’s performance that the agent can use to improve
its policy.

R A vector-valued joint reward function for a group of agents.

‘Matching Pennies’ A two-agent normal form game where each agent can choose to
play either ‘Heads’ or ‘Tails.’ One agent earns a high reward when the agents’
actions match; the other agent earns a high reward when the agents’ actions
do not match.

G A graph (V , E), made up of vertices, V , and edges (or, in the case of a directed
graph, arcs), E .

E The edges of a graph or the arcs of a directed graph; E(·) is an operator that
returns the edges (arcs) of the (directed) graph in the argument.

V The vertices of a graph; V(·) is an operator that returns the vertices of the
graph in the argument.

‘Hamiltonian cycle’ A Hamiltonian cycle is a sequence of vertices and arcs in a graph
that starts and ends on the same vertex and passes through each vertex in the
graph exactly once. A graph is a ‘Hamiltonian graph’ if it has a Hamiltonian
cycle.

‘Bipartite graph’ A graph where the vertices can be separated into two sets, V1 and
V2, such that all arcs connect a vertex in V1 with a vertex in V2.

‘k-partite graph’ A graph where the vertices can be separated into k sets, V1, V2, . . . ,
Vk, such no arc connects one vertex in Vi with another vertex in Vi, for all
1 ≤ i ≤ k.

r A turn-taking ‘resolution’ for the metric ττ, discussed in Chapter 3.
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An(t) The value of agent n’s ‘usage attempt sequence’ at time t.

αa(t, r) The turn-taking ‘allocation’ of agent n in the time range t to t + r − 1, see
Eq. (3.1) on p. 35 in Chapter 3.

f airness(t, r) The fairness of the agents’ turn-taking allocations in the time range t to
t + r− 1, see Eq. (3.2) on p. 35 in Chapter 3.

efficiency(t, r) The efficiency of the agents’ turn-taking allocations in the time range t
to t + r− 1, see Eq. (3.3) on p. 36 in Chapter 3.

ττ A turn-taking metric introduced in Chapter 3.

ττ(t, r) The quantity of turn-taking present in the time range t to t + r − 1, for an
understood group of agents’ usage attempt sequences, see Eq. (3.5) on p. 36.

TT(N, r, P1, P2, . . . , PN) A random variable representing the turn-taking at resolution
r of N probabilistic agents, where Pn is the probability that agent n uses the
shared resource on any time step.

TT(N, r)best A random variable representing the maximum achievable expected turn-
taking at resolution r of N agents, assuming that each agent’s resource usage
probability is independent of time and the other agents’ actions.

In(t) The value of agent n’s input at time t, see Chapter 4, Eq. (4.2) on p. 62.

On(t) The value of agent n’s output at time t, see Chapter 4, Eq. (4.1) on p. 62.

β An agent’s learning rate. A low learning rate means that the agent changes
its policy slowly, while a high learning rate means that the agent changes its
policy quickly.

φ The confidence level of the post-simulation turn-taking classifier in Chapter 4.

� Nicolas Bourbaki’s ‘dangerous bend’ symbol; used to indicate that particularly

difficult mathematics follows for the remainder of a section.

[·]ij Matrix element selection operator; [X]ij is the element in the ith row and the
jth column of X.

e Euler’s number, the base of the natural logarithms, e ≈ 2.718.

E[·] The expectation operator; E[X] is the expected value of the random variable X.

N The set of natural numbers, {1, 2, 3, . . .}.

Z The set of integers, {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

R The set of real numbers.
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‘We’ This dissertation uses the pronoun ‘we’ to avoid constant use of the passive
voice and the less formal ‘I.’
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Chapter 1

Introduction

The essential thesis of this research is that: Algorithmically designed reward func-
tions can influence groups of learning agents toward measurable desired sequen-
tial joint behaviours. The thesis is demonstrated with research explaining how to
measure a particular sequential joint behaviour, turn-taking, how to identify rewards
that are conducive (or prohibitive) to turn-taking by learning agents in a simulated con-
text and how to design rewards that incentivise arbitrary sequential joint behaviours
in multi-agent stochastic games.

Informally, the thesis is about activities performed together through time by a group
of agents that figure out how to do things better as they go. An agent could be a
person, a robot or a computer program. We mathematically explain how to get the
overall outcomes we want by telling the agents what they should individually want.
Because we do this mathematically, we need to measure the things we want our group
of agents to do. This dissertation explains some new ideas about how we can measure
how well a group of agents is taking turns, how we can guess whether or not pairs
of a certain kind of robot-like computer programs will take turns, and how we can
tell individual agents what they should want so that they collectively end up doing
something that we want, for some situations.

In this chapter, we introduce the thesis in detail. We explain the organisation of
this dissertation, highlight the original contributions to human knowledge in this
dissertation, list those parts of this dissertation that have already been published and
mention some ideas that are not part of the thesis. We briefly discuss some important
related work.
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1.1 The big picture

An ‘agent’ is an active goal-directed entity. An agent could be a robot, a person,
a software program, a country or an animal. A multi-agent system is a set of
connected interactive agents that form a complex whole. Multi-agent systems can
model communities, teams and computer networks. Machine learning is a broad
family of algorithms where the function of the algorithm depends on the input,
which can be useful for defining artificial agents. Pattern recognition (Theodoridis
and Koutroumbas, 2009) and data mining (Witten and Frank, 2005) are two areas
of machine learning. Reinforcement learning is a machine learning framework for
controlling agents in stochastic environments where the goal of an agent is to maximise
its real-valued ‘reward’ function (Sutton and Barto, 1998). Multi-agent reinforcement
learning is a framework for studying multi-agent systems where some or all of the
agents use reinforcement learning (Buşoniu et al., 2008).

In some situations, a system designer can control aspects of a multi-agent system. In
multi-agent reinforcement learning, the study of system design is called the ‘design
agenda’ (Gordon, 2007). In single-agent reinforcement learning, the goal is clear:
maximise the reward function. However, in multi-agent systems, each agent has a
goal and it may not be possible to simultaneously maximise all the agents’ reward
functions (Buşoniu et al., 2008). This leaves system designers with the problem of
choosing agents’ rewards so as to induce coordinated behaviour. In this dissertation,
we focus on the design agenda of multi-agent reinforcement learning for cases where
the system designer has complete control of the agents’ reward functions and the
system designer desires a particular sequential joint behaviour.

A sequential joint behaviour is a scheme for the actions of a group of agents at
successive instants. Turn-taking in conversation, rhythm in musical ensembles and
robotic assembly of cars are examples of coordinated sequential joint behaviours. For
convenience, we consider that the joint behaviour sequences are indexed by time.
However, the methods we present are not specific to time per se; they apply to systems
parameterised by any single-dimension quantity. For example, we could apply our
techniques to a system that changes state at a number of discrete points on a line
through space by replacing the time variable in our models with the appropriate
spatial quantity.

How can system designers incentivise desirable sequential joint agent behaviours
when multiple agents must simultaneously learn in the face of uncertain environments
and possible opposition from other agents? We propose ways for system designers to
algorithmically construct appropriate reward functions to influence groups of learn-
ing agents toward measurable desired sequential joint behaviours. This dissertation
presents methods for measuring one kind of sequential joint behaviour, for analysing
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the reward functions of multi-agent systems to predict their behaviour in simulation
and for designing reward functions that influence groups of agents toward desired
behaviours. This dissertation emphasises turn-taking as a potentially desirable se-
quential joint behaviour in order to present a concrete and detailed demonstration of
our methodology. Our work in multi-agent systems focuses on machine learning in
software agents, but our results may have practical applications in areas where the
agents are animals, people or interactive robots.

1.2 The organisation of this dissertation

This dissertation contains sufficient research content to substantiate the thesis. Fig. 1.1
illustrates how Chapters 3–5 support different parts of the thesis and how each
chapter’s results are internally verified. We assume that the reader is familiar with
some notation and concepts from matrix algebra, set theory, probability and statistics.
We introduce additional key technical concepts in Chapter 2: Markov chains, Markov
decision processes, reinforcement learning, game theory and emergent multi-agent
behaviours. Chapter 2 describes the historical and technical foundation that precedes
and underlies the thesis.

Thesis statement:
Algorithmically designed reward functions can influence groups of

learning agents toward measurable desired sequential joint behaviours.

. . . measurable
desired sequential
joint behaviours.

Chapter 3:
Turn-taking can be

measured quantitatively

Analysis and
demonstration

. . . reward functions
can influence groups of
learning agents toward

measurable desired
sequential joint behaviours.

Chapter 4:
We can predict turn-

taking in medium
access games from the

agents’ reward functions

Simulations

Algorithmically designed
reward functions. . .

Chapter 5:
We can design reward
functions for stochastic

games that result in
unique Nash equilibria

Formal proofs

Figure 1.1: Each chapter supports a different part of the thesis and each chapter
is internally supported by a different quantitative method.
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The thesis requires the desired behaviour to be measurable. Chapter 3 introduces
a simple metric for turn-taking. We analyse the performance of random agents,
demonstrate the metric on previously reported cases of emergent turn-taking and
apply the metric to a recorded human conversation. Chapter 3 supports the thesis by
demonstrating how to measure a sequential joint behaviour. Chapter 3 also sets the
foundation for Chapter 4. The thesis makes claims only for measurable behaviours
and Chapter 4 demonstrates how turn-taking in groups of learning agents can be
effected by appropriate reward functions, therefore we must have the metric from
Chapter 3 in order to proceed to Chapter 4.

The thesis claims that reward functions can influence groups of learning agents
towards measurable sequential joint behaviours. Chapter 4 introduces ‘medium access
games,’ a class of multi-agent games that model situations where human and machine
turn-taking may be a desirable joint behaviour for groups of learning agents. We
analyse medium access games using Nash equilibria (Nash, 1950) and Markov chain
techniques, and present simulation results showing which reward functions result
in turn-taking for pairs of Q-learning agents (Watkins, 1989). Therefore, Chapter 4
demonstrates how reward functions can influence the sequential joint behaviour of
pairs of learning agents toward measurable desired behaviours.

The thesis claims that we can algorithmically design reward functions to influence
groups of agents toward desired behaviours. Chapter 5 extends the methodology
of Chapter 4 and introduces a method for designing reward functions for stochastic
games (Shapley, 1953; Littman, 1994) that result in predetermined desirable Nash
equilibria. We formally prove that our method is successful and supply an example
application of our method where we induce turn-taking in a three-agent stochastic
game. Chapter 5 supports the thesis by demonstrating how to design appropriate
reward functions that can influence the sequential joint behaviour of groups of agents.

The technical chapters (Chapters 3–5) are designed to be reasonably self-contained, at a
minor expense of repetition. Therefore, rather than including an independent literature
review chapter, each chapter reviews the previous work that is directly related to
that chapter. We briefly outline the most important related work in Section 1.3. Each
chapter introduces the main ideas used in that chapter, develops and explains research
content, then proposes future work and discusses alternative approaches. Chapter 6
reiterates the key conclusions of Chapters 3–5, addresses potential criticisms and
outlines the future research areas that follow from the thesis. Appendix A presents
graph generator algorithms that supplement the material in Chapter 5 but are not
essential to the thesis.
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1.2.1 Research contributions

This dissertation embodies a number of original contributions to human knowledge.
Chapter 3 makes the following contributions to the study of multi-agent systems,
emergent communication and emergent turn-taking:

• We propose ττ, a quantitative measure for turn-taking based on the intuitive
concept that good turn-taking implies fair and efficient use of a shared resource.

• We derive the quantity of turn-taking achieved by random agents. We de-
scribe how to compare distributions and individual values of ττ against the
performance of random agents.

• We demonstrate the suitability of ττ by re-interpreting two previously reported
cases of turn-taking in simulated agents (Di Paolo, 2000; Iizuka and Ikegami,
2004). We present an application of our metric where we measure the quantity
of turn-taking present in a recorded human conversation.

• We released an open source software library with an implementation of ττ.

Chapter 4 examines reward functions for pairs of Q-learning agents that are con-
ducive (or prohibitive) to turn-taking in simulated medium access games. Chapter 4
contributes to the multi-agent reinforcement learning approach to turn-taking in a
number of ways:

• We define ‘medium access games’ to represent situations in human and machine
communication where turn-taking might be a desirable joint behaviour.

• We identify which deterministic agent policies produce turn-taking behaviour
in medium access games. We use Markov chains to derive the limit-average
expected payoffs for agents with stationary stochastic policies, which enable us
to compute the Nash equilibria of medium access games.

• We present extensive simulation results for pairs of Q-learning agents with a
range of reward functions. We analyse these results using the Nash equilibria of
the corresponding medium access games, demonstrating how to predict which
reward functions are likely to result in turn-taking as a system behaviour.

• We consider extensions of our model and suggest ways to apply our methodol-
ogy to analyse reward functions that result in sequential joint behaviours other
than turn-taking.

Chapter 5 introduces a method for designing reward functions for stochastic games,
making the follow contributions to the design agenda of multi-agent reinforcement
learning:
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• We present a method for designing reward functions for Markov decision
processes. We prove that our method results in a Markov decision process where
the unique optimal policy is a predetermined desirable policy.

• We suggest methods for designing reward functions for normal form games.
We prove that our methods result in games with unique Nash equilibria. We
identify cases where a desired joint behaviour cannot be encoded as a Nash
equilibrium.

• We integrate our reward design techniques for Markov decision processes and
normal form games for a complete method of designing reward functions
for stochastic games. We prove that this method results in a unique Nash
equilibrium and we give an example demonstrating this method.

1.2.2 Publications

Parts of this dissertation have already been published as journal papers. Specifically,
Chapter 3 and Chapter 4 include content published in the interdisciplinary journal
Adaptive Behavior.

Chapter 3:
Raffensperger, P. A., Webb, R. Y., Bones, P. J., and McInnes, A. I. (2012b). A simple
metric for turn-taking in emergent communication. Adaptive Behavior, 20(2):104–116

Chapter 4:
Raffensperger, P. A., Bones, P. J., McInnes, A. I., and Webb, R. Y. (2012a). Rewards for
pairs of Q-learning agents conducive to turn-taking in medium-access games. Adaptive
Behavior, 20(4):304–318

Other published work by the author that is not related to this dissertation is:

Raffensperger, P. A. (2012). Toward a wave digital filter model of the Fairchild 670
limiter. In Proceedings of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York,
UK

Raffensperger, P. A. and Hayes, M. P. (2008). Motion to music interface. In Proceedings
of the Electronics New Zealand Conference, Auckland, New Zealand

1.2.3 What the thesis is not about

Unlike much research in machine learning, the thesis is not about new machine
learning algorithms. We focus on analysing multi-agent systems and designing the
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reward functions that guide learning algorithms. Our work is complementary to the
development of new machine learning algorithms.

We discuss emergent communication in Chapter 3 and ‘medium access games’ in
Chapter 4, but the thesis is not about practical medium access control schemes
(Tanenbaum, 2002) or cognitive radio (Mitola and Maguire, 1999; Haykin, 2005). While
medium access control and cognitive radio are important and closely related research
areas, our emphasis is on multi-agent system analysis and design rather than on
building better practical communication systems.

Many mathematical models of real-world systems consider time to be a real-valued
quantity. However, like much work in reinforcement learning, we make the simplifying
assumption that time is discrete, that systems change state at a countable number
of instants. We can represent a band-limited continuous time signal as a discrete
time signal without loss of information if we sample the discrete time signal at more
than twice the bandwidth of the continuous time signal (Ambardar, 1999, p. 448).
Regardless of any limitations imposed by discrete time, the thesis refers only to
‘sequential’ behaviours, that is, behaviours that are fully representable in discrete time
systems. While it may be possible to extend our results to continuous time systems,
we make no claims about continuous time systems.

1.3 Related research areas

Here, we consider those research areas that are most closely related to the research in
this dissertation. This section presents only a brief literature review. In each technical
chapter, we explore in more depth the work in the literature that relates to that chapter.

The study of reinforcement learning is based on the premise that an agent can
be controlled by a scalar reward function (Sutton and Barto, 1998). More recently,
researchers have extended reinforcement learning to multi-agent systems (Buşoniu
et al., 2008). Multi-agent reinforcement learning includes the study of how the
sequential joint behaviour in groups of learning agents can be influenced by reward
functions. This dissertation relates to the design agenda of multi-agent reinforcement
learning proposed by Gordon (2007). We discuss reinforcement learning and multi-
agent reinforcement learning in Chapter 2.

In Chapter 3, we present a novel metric for turn-taking. Iizuka and Ikegami (2004)
used a turn-taking metric for their study of turn-taking in simulated mobile robots.
Unlike Iizuka and Ikegami’s turn-taking metric, we can apply our metric to multi-
agent systems with any number of agents and our metric can model situations where
more than one agent tries to take a turn at one time. We compare and contrast our
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metric with Iizuka and Ikegami’s metric in more detail in Chapter 3. Our turn-taking
metric incorporates metrics for fairness and efficiency. Lan et al. (2009) derive a
family of fairness functions, some of which also incorporate a notion of efficiency.
However, Lan et al. does not consider the passage of time, which is essential to our
turn-taking metric. In spoken dialog systems, turn-taking quality is measured by the
lengths of silences between speech and the interruption rates (Raux and Eskenazi,
2008; Turunen et al., 2006). However, silence lengths and interruption rates are less
able to distinguish turn-taking from other arbitrary behaviours, which is one of the
goals of our turn-taking metric.

Some researchers have investigated how turn-taking emerges in groups of agents.
Neill (2003) describes the ‘turn-taking dilemma,’ a repeated two-agent game where
the optimal strategy is for the agents to take turns. Neill’s study bears some similarity
to our work in Chapter 4 but he does not consider learning agents or specifically
examine different payoffs for the agents. Helbing et al. (2005) present the results of
an experiment in a computer laboratory where each person in a pair plans to drive
either on a slow road or a fast road. Helbing et al. found that people sometimes take
turns planning to drive on the fast road and they conjecture that the emergence of
turn-taking depends on the rewards for different outcomes. Helbing et al.’s study
bears some similarity to Chapter 4, but we focus on turn-taking of Q-learning agents in
simulated medium access games rather than people taking turns in congestion games.
Colman and Browning (2009) simulated the evolution of cooperative turn-taking in
iterated static games played by Moore machines trained with a genetic algorithm. We
use our turn-taking metric to evaluate the presence of turn-taking but Colman and
Browning use other turn-taking performance measures, such as the agents’ average
payoffs.

Our reward design method for stochastic games in Chapter 5 builds on proofs of
the necessary and sufficient conditions for constructing normal form games with
unique Nash equilibria for pairs of agents (Kreps, 1974) and arbitrary numbers of
agents (Kreps, 1981) and is closely related to a method for constructing two-agent
normal form games with unique predetermined Nash equilibrium (Quintas, 1988).
We go beyond the work of Kreps and of Quintas by proposing a method for designing
reward functions for stochastic games with arbitrary numbers of agents that result in
unique Nash equilibria.

‘Mechanism design’ is a part of game theory that was pioneered by Leonid Hurwicz,
Eric Maskin, Roger Myerson and others. Mechanism design is about constructing
games that result in some desirable outcome even when the agents act selfishly.
Mechanism design can be automatically achieved (Conitzer and Sandholm, 2002;
Sandholm, 2003). Our reward design method in Chapter 5 is related to automated
mechanism design where the mechanism designer desires a particular outcome.
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However, while mechanism design considers ways to achieve desired outcomes
despite the agents’ preferences, we consider that the agents have no prior preferences
and that we dictate the agent’s preferences entirely.

1.4 Summary

We introduce our approach to measuring and influencing sequential joint agent
behaviours and we discuss how this dissertation is organised. We mention research
that closely relates to the research in this dissertation. Chapters 3–5 are self-contained
explorations of different aspect of the thesis: Chapter 3 introduces a metric for turn-
taking; Chapter 4 describes how to analyse reward functions to predict turn-taking in
medium access games played by pairs of Q-learning agents; and Chapter 5 presents
a method for designing reward functions for stochastic games that result in unique
predetermined Nash equilibria. We present our conclusions and suggestions for
future work in Chapter 6. The research presented in this dissertation is summarised
in compressed form by the thesis:

Algorithmically designed reward functions can influence groups of learn-
ing agents toward measurable desired sequential joint behaviours.

The thesis is overlaid on a background of research in machine learning and multi-agent
systems, which we discuss in greater depth in Chapter 2.
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Chapter 2

Background

This dissertation builds on research in multi-agent systems, machine learning, game
theory and emergent multi-agent behaviours. Fig. 2.1 illustrates the relationships
between those research areas and our work. Chapters 3–5 are written for an audience
that is already familiar with these ideas. In this chapter, we explore the most important
background ideas to this dissertation; this chapter contains no new technical results.

In Section 2.1, we discuss Markov chains, their extension to Markov decision processes
and reinforcement learning, which is a method for solving Markov decision processes.
We introduce relevant concepts in multi-agent systems and game theory in Section 2.2,
where we also describe multi-agent reinforcement learning. We describe the concept of
emergent phenomena in Section 2.3 with particular emphasis on multi-agent emergent
behaviours. We summarise this chapter in Section 2.4.

2.1 Markov chains, Markov decision processes and reinforce-
ment learning

We are particularly interested in agents situated in stochastic environments because
the set of stochastic models is a superset of the set of deterministic models and
stochastic models are at least as good as deterministic models. A ‘Markov chain’ is
a tool for modelling stochastic processes and a ‘Markov decision process’ extends
the idea of a Markov chain to include an active agent. ‘Reinforcement learning’ is an
agent-based way to solve Markov decision processes. A reinforcement learning agent
learns ‘online;’ the agent can start solving a Markov decision process with incomplete
information and then improve over time.
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Figure 2.1: The thesis sits in the context of a number of inter-related research
areas. The most important areas are multi-agent systems, reinforcement learning,
emergent communication and game theory. ‘MARL’ stands for multi-agent
reinforcement learning.

2.1.1 Markov chains

Our analysis of sequential joint behaviour in groups of learning agents makes extensive
use of Markov chains. A Markov chain is a discrete-state stochastic process where
the next state does not depend on past states, but only depends on the present state.
Markov chains originated in the early 20th century work of the Russian mathematician
Andrey Markov (Markov, 1906; Basharin et al., 2004).

We consider discrete time Markov chains, t ∈ Z, with finite state sizes. Formally,
a Markov chain is a tuple C = (S , T) where S is a set of states and T is a state
transition function that indicates the probability of transitioning from one state to
another, T : S × S → [0, 1]. Consider, for example, a Markov chain, Cx, with three
states, S = {s1, s2, s3}, and a state transition function T(si, sj). We can represent Cx

as a state transition diagram, as in Fig. 2.2, where we define T graphically by the
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Figure 2.2: An example Markov chain, Cx, with three states. The vertices represent
states and the numbers on the arcs represent the state transition probabilities.

Table 2.1: An example state trajectory for the Markov chain shown in Fig. 2.2.

t 0 1 2 3 4 5 6 . . .
S(t) s1 s3 s3 s2 s1 s2 s1 . . .

arcs between states. We can also represent T with a stochastic matrix, P, such that
[P]ij = T(si, sj). The stochastic matrix for Cx is:

P =

 0.2 0.4 0.4
0.5 0.5 0
0.1 0.2 0.7

 (2.1)

Let S(t) be a random variable that represents the state at time t. Given an initial state
S(0), we can create a trajectory of states through time by, at each time step, selecting
a new state based on the probability distribution in the row of P determined by the
current state. Table 2.1 shows one such trajectory.

We represent a probability distribution over states at time t with a column vector s(t),
such that s(t) = (p [S(t) = s] for s ∈ S)T. Given such a vector, we can calculate the
distribution of states at time t + 1 using P:

s(t + 1) = Ps(t) (2.2)

A state, s, in a Markov chain is ‘periodic’ with period L if and only if L is the largest
possible integer such that p[S(t + k) = s|S(t) = s] = 0 for all k such that k is not
divisible by L (Ching and Ng, 2005, p. 14). A state is ‘aperiodic’ if L = 1; if all states
in a Markov chain are aperiodic, then the Markov chain is also said to be aperiodic. A
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Markov chain is ‘irreducible’ if every state can be reached from every other state in a
finite number of time steps with non-zero probability. If a Markov chain is irreducible
and aperiodic, then there exists at least one stationary distribution of states, s̄, such
that:

s̄ = Ps̄ (2.3)

Furthermore, in an irreducible aperiodic Markov chain, all distributions of states will
approach a stationary distribution of states as t approaches infinity (Ching and Ng,
2005, p. 15). We use the stationary distribution of states of Markov chain for our
analysis in Chapter 4. For more information on Markov chains, see Ching and Ng
(2005), Häggström (2002), or Appendix M of Filar and Vrieze (1997).

2.1.2 Markov decision processes

The idea of a Markov decision process builds on the concept of a Markov chain by
considering that the state changes not only depend on the state transition probabilities
but also depend on the actions of a goal-directed agent. The goal of the agents is to
act so as to maximise a reward function. The idea of a Markov decision process is a
powerful model for discrete stochastic control problems: we can describe desirable
outcomes with the reward function in such a way that the necessary actions to
maximise that reward function can be calculated.

Formally, a Markov decision process is a tuple, D = (S ,A, T, R) where S is a set of
states, A is a set of actions, T : S ×A× S → [0, 1] is a state transition function and
R : S ×A× S → R is a reward function. Fig. 2.3 shows part of an example Markov
decision process. An agent’s ‘policy’ summarises its action choices, and is a stochastic
mapping between states and actions, π : S ×A → [0, 1]. In the context of Markov
decision processes, we use the terms ‘policy’ and ‘behaviour’ interchangeably.

Observe that if the agent fixes its policy, then the Markov decision process reduces to
a Markov chain. If the agent follows policy π, where π(s, a) represents the probability
that the agent will choose action a in state s, then the system dynamics are fully
described by a Markov chain with the same set of states as the original Markov
decision processes and with state transition probabilities calculated as:

Tπ(s, s′) = ∑
a∈A

T(s, a, s′)π(s, a) (2.4)

for all s ∈ S and all s′ ∈ S , where Tπ is the state transition function of the new
Markov chain and T is the state transition function of the original Markov decision
process.
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Figure 2.3: An example showing part of a Markov decision process. The circles
represent states and the squares represent actions. The arrows from states to
actions are agent choices while the arrows from actions to states occur with
probabilities given by the state transition function.

The goal of the agent is to find an ‘optimal’ policy. A policy is optimal if it maximises
the agent’s ‘payoff’ given the starting state of the system, for all starting states. We
call the way that we calculate the agent’s payoff the ‘valuation scheme.’ For all the
valuation schemes mentioned in this dissertation, every Markov decision process has
an optimal deterministic policy. A deterministic policy is one where there exists some
action a such that π(s, a) = 1 for all s ∈ S .

We can compute the agent’s payoff in different ways. For example, we could maximise
the expected reward for the current time step, t:

vm(s, π) = Es,π[R(t)] (2.5)

where Es,π[R(t)] is a random variable representing the reward at time t given that the
system starts in state s and that the agent follows policy π. This valuation is called
‘myopic’ because the agent may earn smaller rewards in the long run by taking larger
immediate rewards. Alternatively, we can make the agent focus on long-term expected
rewards by setting the agent’s payoff to the limit-average expected reward, which, for
state s at time t, and the agent’s policy, π, we compute as:

va(s, π) = lim
k→∞

1
k

k+t

∑
t′=t

Es,π[R(t′)] (2.6)
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The myopic valuation and the limit-average valuations are extremes on the continuum
between valuing rewards that are close in time to the present and valuing high rewards
over a long time span. A more flexible valuation scheme is the γ-discounted valuation,
where we explicitly control the degree to which the agent prefers earlier rewards to
later rewards by choosing the value of γ. We compute the γ-discounted expected
reward for the agent as:

vγ(s, π) = (1− γ)
∞

∑
t′=t

γt′−tEs,π[R(t′)] (2.7)

The 1− γ term is a normalising factor so that |vγ(s, π)| ≤ max{|R(t)|}. Usually, we
restrict γ to the range [0, 1).

The best choice of valuation scheme depends on the situation. Myopic valuation is
usually used to simplify situations, since it is straightforward to compute. The limit-
average valuation also has a computational advantage: if the agent’s policy reduces the
Markov decision processing into an irreducible aperiodic Markov chain, then the limit-
average valuation does not depend on the initial state. We make use of this property
of the limit-average valuation in Chapter 4. The γ-discounted valuation has great
flexibility: for γ = 0, the γ-discounted valuation is equivalent to the myopic valuation
and the γ-discounted valuation becomes similar to the limit-average valuation as γ

approaches 1. For more information on Markov decision processes, see Puterman
(1994).

2.1.3 Reinforcement learning

Machine learning is the study of algorithms that change their function to suit their
input. ‘Learning’, ‘adaption’ and ‘evolution’ are concepts borrowed from psychology
and biology. While algorithms in machine learning draw inspiration from nature, it
is best to think of machine learning as a broad family of computational algorithms
rather than ways of producing ‘artificial intelligence.’ The term ‘artificial intelligence’
is plagued by cultural expectations and the philosophical problem of defining intelli-
gence in a definite and measurable way. Consequently, we adopt the term ‘machine
learning.’

Hand-programmed algorithms have the advantage of performing well on their specific
task, but there are situations where machine learning is important. Sometimes small
changes in the definition of the problem can have enormous consequences on the
solution. We use learning algorithms to solve problems where the algorithm itself
depends on the data. Learning algorithms are useful for meta-design; if we can
quantify ‘good design’ but are unable to search the design space efficiently by hand,
then we can use adaptive algorithms to find good solutions. Adaptive algorithms are
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useful for defeating uncertainty and constantly learning online algorithms are useful
for solving non-stationary problems.

Machine learning encompasses a broad range of problem domains including pattern
recognition (Theodoridis and Koutroumbas, 2009), data mining (Witten and Frank,
2005), natural language processing (Manning and Schutze, 1999) and optimisation
(Goldberg, 1989). Reinforcement learning is the branch of machine learning that
focuses on control in uncertain environments (Sutton and Barto, 1998). In particular,
reinforcement learning is a way to solve Markov decision processes in an online
manner. Andreae did some of the earliest work on reinforcement learning at the
University of Canterbury with STeLLA (Andreae, 1963; Andreae and Cashin, 1969;
Andreae, 1969) and later PURR-PUSS (Andreae, 1977, 1998).

Reinforcement learning is about choosing actions for an agent in a stochastic envi-
ronment so as to maximise the agent’s ‘reward’ function. Sutton and Barto describe
reinforcement learning concisely:

Reinforcement learning is learning what to do—how to map situations
to actions—so as to maximize a numerical reward signal. The learner is
not told which actions to take, as in most forms of machine learning, but
instead must discover which actions yield the most reward by trying them.
In the most interesting and challenging cases, actions may affect not only
the immediate reward but also the next situation and, through that, all
subsequent rewards. These two characteristics—trial-and-error search and
delayed reward—are the two most important distinguishing features of
reinforcement learning. (Sutton and Barto, 1998, pp. 3-4)

Reinforcement learning draws inspiration from the now outdated (Pinker, 1999) psy-
chological theory of behaviourism that Skinner (1938) and other researchers pioneered.
Behaviourism is the idea that we can condition animals’ behaviour by positive and
negative reinforcements. For example, near the start of the 20th century, the Russian
scientist Pavlov conditioned dogs to salivate at the sound of a bell by ringing the
bell before feeding the dogs (Todes, 2001). In a similar manner, reinforcement learn-
ing algorithms learn a policy from the scalar reward function of a Markov decision
process.

Traditionally, reinforcement learning models Markov decision processes with two
parts: an environment and an agent, as shown in Fig. 2.4. The agent choses actions
based on the state of the environment so as to maximise its reward function (Sutton
and Barto, 1998). The environment encapsulates the set of states, the reward function
and the state transition function. We assume that the agent starts without complete
knowledge of the environment; the agent must learn the dynamics of the environment
at the same time as it learns to maximise its reward function. We can also apply
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Figure 2.4: Single-agent reinforcement learning models situations as an environ-
ment and an agent.

reinforcement learning in multi-agent settings (Buşoniu et al., 2008); we discuss
multi-agent reinforcement learning in Section 2.2.4, after we introduce stochastic
games.

One popular single-agent reinforcement learning algorithm is Q-learning, which
provably converges to the optimal policy when solving a Markov decision process
(Watkins, 1989). A Q-learning agent maintains a table of state-action values, or Q-
values. Initially, we set the table with some arbitrary values; usually we use large
initial Q-values, for an optimistic learning bias (Sutton and Barto, 1998). When the
agent takes action a in state s, the next state is s′ and the agent earns reward R(s, a, s′).
The Q-learning algorithm updates the Q-table as:

Q(s, a)← (1− β)Q(s, a) + β

(
R(s, a, s′) + γ max

a′∈A

{
Q
(
s′, a′

)})
(2.8)

where γ is the discount factor of the Markov decision process and β is a ‘learning
rate’ that determines how quickly the algorithm adapts to new information. This Q-
learning update function assumes that the environment is a Markov decision process
with the γ-discounted valuation. Q-learning is an off-policy learning method; that
is, a Q-learning agent can follow a wide range of different policies and still learn the
right action values. Usually, we couple Q-learning with an ‘exploration policy’ that
describes how to select actions. We describe considerations relevant to exploration
policies and give an example policy in Section 2.1.4.

Notice that the variant of Q-learning stated here stores a real value for each state-action
pair. However, the number of states may be large (Sutton and Barto, 1998, §8). In
general, we must address this difficulty in reinforcement learning systems, but we
side-step this issue by limiting ourselves to simulations with small numbers of states.
For one way to defeat the problems with Q-learning and large numbers of states, see
the recent algorithm by Sutton et al. (2009).
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Figure 2.5: The two-armed bandit problem serves to illustrate the balance between
exploitation of the best known rewards and exploration to identify the best
rewards.

2.1.4 Balancing exploration and exploitation

Q-learning is a way of updating state-action values to keep a running estimate of the
value of each action in each state. However, if the agent always selects the action with
the highest value given the current state, then the agent may be misled if it receives
an unusually low reward for the action with the highest expected reward early in its
learning processes. The agent has to balance its ‘exploitation’ of known good rewards
with ‘exploration’ for currently unknown good rewards. This difficulty is not specific
to Q-learning; all reinforcement learning algorithms must balance exploration with
exploitation.

The multi-armed bandit problem is a simple stochastic decision problem that serves
to illustrate the important balance between exploration for the highest rewards and
exploitation of the highest known rewards (Ishikida and Varaiya, 1994; Gittins et al.,
2011). Consider a gambling machine similar to a ‘one-armed bandit’ slot machine
found in casinos but with more than one arm, as illustrated in Fig. 2.5 for the case of
two arms.

The agent chooses to place a coin in either the ‘Lucky left’ slot or the ‘Risky right’ slot
and pulls the level for the chosen side. The two-armed bandit then releases winnings
with a value randomly sampled from a distribution determined by choice of arm.
The agent repeats this process a number of times, trying to maximise its winnings.
Suppose that the lucky left arm has a mean value of µL and a standard deviation of
σL, while the risky right arm has a mean value of µR and a standard deviation of σR.
Assume that the lucky left arm is the best choice, but has a larger standard deviation
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than the right arm:

µL > µR

σL > σR

σL > µL − µR (2.9)

The agent chooses a slot for a number of trials. Assuming the agent does not know
Eq. (2.9), how should the agent allocate trials to the two arms? The arm with the
highest mean reward may not always produce the highest reward on each trial. Each
trial provides information about the distributions of the two arms, but at no trial does
the agent ever have certainty as to which arm has the highest mean value. The agent
must balance trials that explore for the best arm while simultaneously exploiting the
winnings offered by the arm with the highest currently estimated value.

There are a variety of strategies for balancing exploration with exploitation. One
method is to allocate some trials to each arm and to allocate the remaining trials
to the arm that has the highest estimated value after that point (Goldberg, 1989,
p. 37). Another method is the ‘ε-greedy’ policy, where the agent chooses the most
valuable arm (the ‘greedy’ choice) with probability 1− ε, and chooses a random
arm with probability ε (Sutton and Barto, 1998). Common values for ε are 0.1 or
0.01. Throughout this dissertation, we use ε-greedy policies when we need agents
to balance exploration and exploitation. To learn more about reinforcement learning
and the exploration-exploitation balance, see the excellent book by Sutton and Barto
(1998).

2.2 Multi-agent systems and game theory

A multi-agent system is a set of related agents where each agent’s actions may affect
the other agents. While single-agent models comprise an agent and an environment,
like in Fig. 2.4, a multi-agent system has multiple agents interacting with each other.
In multi-agent systems, we can view the environment as a special, singleton agent.
Alternatively, an agent could view all of the other agents as part of its environment.
Multi-agent systems are used to model financial trading situations (Sherstov and
Stone, 2005), to describe robotic soccer (Kitano et al., 1997), to automatically generate
musical rhythms (Eigenfeldt, 2007) and to model many other situations (Shoham and
Leyton-Brown, 2009). Each agent may have its own reward function which may or
may not be related to the other agents’ reward functions. Game theory provides us
with methods for analysing multi-agent systems where each agent is interested in
maximising its reward function.
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2.2.1 Multi-agent systems

A number of algorithms and problems in search and optimisation can be cast in a
distributed way and solved with agents (Shoham and Leyton-Brown, 2009). While
Moore’s law has afforded us great increases in computing power (Moore, 1965), multi-
agent systems have an intrinsic advantage over centralised algorithms because it is
hard to increase the speed of each computation process, but it is natural to assign
each agent to its own processes. Most supercomputers have abundant parallelism, but
have comparable clock speeds to personal computers. Multi-agent systems have the
important advantage of being easier to implement with parallel processing.

We can classify multi-agent systems based on the relationships between the agents’
goals. A ‘cooperative’ multi-agent system is one where the agents share the same
goal and each agent acts in conjunction with the other agents to achieve that goal.
For example, one kind of multi-agent system can find the shortest path between
two vertices in a graph (Shoham and Leyton-Brown, 2009); each agent performs its
function and the goal is achieved. On the other hand, a ‘non-cooperative’ multi-
agent system is one where each agent has its own reward function and each agent
simply tries to maximise its own reward function. For example, we might model a
financial trading system as a non-cooperative multi-agent system and reward each
agent based on how much money it earns. To confuse matters slightly, the agents in
a non-cooperative multi-agent system can be rewarded for the performance of the
group which means that the agents benefit from cooperating with each other. The
key feature of a non-cooperative multi-agent system is that each agent will maximise
its own reward function regardless of the other agents’ reward functions. Thus the
agents in a non-cooperative multi-agent system are intrinsically self-interested, even
if their self-interest might incidentally lead to cooperative behaviour. To learn more
about multi-agent systems, see Shoham and Leyton-Brown (2009).

2.2.2 Normal form games and Nash equilibria

Game theory provides important methods for the study of multi-agent systems. The
central thesis of game theory is that we can model some microeconomic situations
as mathematical games (von Neumann and Morgenstern, 1944). We can view a
non-cooperative multi-agent system as an economy by interpreting the agents’ reward
functions as having monetary values. A seminal result in non-cooperative game
theory is the ‘Nash equilibrium’ (Nash, 1950), which describes how ideal agents might
behave.

The concept of the Nash equilibrium is best illustrated in the game-theoretic framework
of ‘normal form games.’ Rock-paper-scissors is a popular game that is often played as
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a normal form game. In a normal form game, at a single instant, each agent selects an
action then each agent is rewarded based on the combination of the agents’ actions.
In rock-paper-scissors, each of two people simultaneously displays one of three hand
symbols which represent rock, paper or scissors, where rock defeats scissors, scissors
defeats paper and paper defeats rock. The winner receives a high reward and the
loser receives a low reward; if both people choose the same action, then both receive
a medium reward. Formally, a normal form game is a tuple Γ = (N ,A, R) where
N is a set of agents, A is the joint action space, An is the action space of agent n,
R : A → R|N | is the vector-valued joint reward function and Rn : A → R is the reward
function for agent n. We consider an ∈ An to be one of agent n’s actions, a ∈ A to be
a joint action and a−n ∈ ×m∈N ,m 6=nAm to be a vector of actions that includes actions
for all agents except agent n.

Rather than restricting agents to selecting a single action, we allow agents to select
probability distributions over their actions. In the context of normal form games,
we call the agent’s probability distribution over its actions the agent’s ‘policy;’ πn

represents agent n’s policy and πn(an) is the probability that agent n will chose action
an. We assume that each agent chooses its policy to maximise its expected reward.
The traditional assumptions of game theory are that the agents act ‘rationally’ in the
sense that they prefer higher rewards to lower ones (von Neumann and Morgenstern,
1944; Arrow, 1986) and that all agents know that the other agents will act rationally.
A rational agent always acts in a self-serving way and takes advantage of all the
information available to it. Many multi-agent reinforcement learning algorithms fail
to achieve the game-theoretic ideal of rationality (Buşoniu et al., 2008).

A Nash equilibrium is a distribution over joint agent actions that rational agents with
perfect information about the reward function would play. At a Nash equilibrium, no
agent can improve its reward function by unilaterally changing its policy. Formally, a
Nash equilibrium is a joint policy, π, such that each agent’s policy is a ‘best response’
to the other agent’s policies. We define agent n’s best response in terms of vn(an),
that agent’s expected value for taking action an, given that the other agents have fixed
their policies at πm for m ∈ N , m 6= n:

vn(an) = ∑
a−n∈×m∈N ,m 6=n Am

Rn(an, a−n) ∏
m∈N ,m 6=n

πm(am) (2.10)

where am is agent m’s action in a−n. An agent’s policy, πn, is a best response to the
other agents’ policies if and only if the expected value for each action that agent n
plays with non-zero probability is equal to the expected value of the most valuable
action. That is, for all an ∈ An, the inequality πn(an) > 0 implies that:

vn(an) = max
a′n∈An

{vn(a′n)} (2.11)



2.2 MULTI-AGENT SYSTEMS AND GAME THEORY 22

Table 2.2: An example normal form game where the agents have conflicting
interests, commonly called the ‘Prisoners’ Dilemma.’ The reward function values
are shown in the form of reward for row agent, reward for column agent.

Column agent
C D

Row agent
C 6, 6 0, 10
D 10, 0 2, 2

An agent’s policy is its best response to the other agents’ policies if that policy
maximises its expected payoff. If a policy is an agent’s best response, then that policy
must take all sub-optimal actions with zero probability (von Stengel, 2007, Proposition
3.1 on p. 55). At a Nash equilibrium, each agent’s policy is its best response to the
other agents’ policies. A Nash equilibrium is ‘pure’ if each agent choses an action
with probability one and is ‘mixed’ otherwise. In general, a game may have more than
one Nash equilibrium, but every normal form game has at least one Nash equilibrium
(Nash, 1950). The Nash equilibrium of rock-paper-scissors is a mixed one where both
people play each action with equal probability.

The beauty of a Nash equilibrium is that it predicts the expected outcome of a
normal form game in slightly idealised conditions. In general, we may not be able
to simultaneously maximise all the agents’ reward functions; the agents may have
conflicted interests. A Nash equilibrium allows us to analyse situations where the
agents’ reward functions can be simultaneously maximised as well as situations
where the agents’ interests are conflicted. For example, consider the game ΓPD where
N = {Column agent, Row agent} and An = {C, D} for n ∈ N and with payoffs as
shown in Table 2.2. This game is a variation on the ‘Prisoners’ Dilemma’ (Flood, 1958)
which we can interpret as a situation where the police apprehend two criminals and
each prisoner has the opportunity to either cooperate (C) with his accomplice or to
admit guilt to the police, defecting (D) against his partner. The prison sentence for
each criminal depends on the actions of both agents. While the sum of the agents’
reward functions is maximised when both agents cooperate, each individual agent
expects a greater payoff by choosing to defect regardless of the other agents’ actions.
Consequently, the Nash equilibrium for the game in Table 2.2 is pure: both agents
defect.

Mechanism design (Maskin, 1985) is the study of constructing games that result in
some desirable outcome as the Nash equilibrium of the game. While our research
does not build directly on mechanism design, mechanism design is similar in spirit to
our work in Chapter 5. For more information on game theory, normal form games,
Nash equilibrium and mechanism design, see the helpful series of books edited by
Aumann and Hart (1992; 1995; 2002).
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. . .

s1 a1
1 a2

1

a1
2 2, 0 0, 2

a2
2 0, 2 2, 0

s2 a1
1 a2

1

a1
2 2, 0 0, 2

a2
2 0,2.5 1.7,0

s3 a1
1 a2

1

a1
2 3.3,0 0,1.4

a2
2 0,2.5 1.7,0

. . .

Figure 2.6: An example showing part of a stochastic game with two agents and
two actions per agent. The values in the tables are the rewards to the agents for
taking that combination of actions in that state.

2.2.3 Stochastic games

The idea of a ‘stochastic game’ generalises the ideas of a Markov decision process and
of a normal form game. We can think of a stochastic game as a multi-agent Markov
decision process or as a normal form game with states. The set of stochastic games is
a subset of the set of non-cooperative multi-agent systems. We make extensive use of
stochastic games in Chapter 5.

Formally, a stochastic game is defined as a tuple G = (N ,S ,A, T, R) where S is a set of
states, A is a joint action space, T is a state transition function T : S ×A× S → [0, 1]
and R : S × A × S → R|N | is a joint reward function. Fig. 2.6 shows part of an
example stochastic game; in essence, the agents play a normal form game at each
state and the state transitions depend on the current state and the agents’ actions.
The goal of each agent is to control its actions so as to maximise its expected rewards.
Each agent maintains a policy, πn, that is a mapping between states and probability
distributions over actions such that πn(s, an) ∈ [0, 1] and ∑an∈An

πn(s, an) = 1, for all
s ∈ S . In the context of a stochastic game, an agent’s ‘behaviour’ is equivalent to its
policy and the ‘joint behaviour’ of a group of agents is equivalent to the agents’ joint
policy.
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Stochastic games bear much similarity to single-agent Markov decision processes. In
a stochastic game, each agent’s goal is to maximise its payoffs, which we can base on
the myopic valuation, the limit-average valuation or the γ-discounted valuation in the
same way as in a Markov decision process. However, unlike in a Markov decision
process, each agent must cater for the possibility that another agent might exploit it.
This implies that the agents cannot necessarily find an optimal policy for a stochastic
game in the set of deterministic policies. An agent may have to randomise between
more than one action to prevent other agents from exploiting the predictability of a
deterministic policy.

If we fix the agents policies’, then we can reduce a stochastic game to a Markov chain.
The Markov chain will have the same set of states as the stochastic game and will
have a state transition function, Tπ, computed as:

Tπ(s, s′) = ∑
a∈A

T(s, a, s′) ∏
n∈N

πn(s, an) (2.12)

where an is agent n’s action in the joint action a.

Stochastic games have Nash equilibria like normal form games. A Nash equilibrium
for a stochastic game is a joint policy such that no agent can increase its payoff by
unilaterally changing its policy. There exists a Nash equilibrium in the set of stationary
stochastic policies for every stochastic game (Filar and Vrieze, 1997, Theorem 3.8.1, p.
130).

We consider that the agents in a stochastic game have complete knowledge of the
current system state. However, a richer set of models is the set of partially observable
stochastic games, where agents do not observe the full state. An agent in a partially
observable stochastic game receives ‘observations’ which allow the agent to estimate a
probability distribution over states. While the idea of partially observable stochastic
games allows for accurate models, finding optimal strategies in a partially observable
stochastic game is computationally intractable (Bernstein et al., 2002). We define
medium access games in Chapter 4 to be partially observable, however we use the Q-
learning single-agent reinforcement learning technique rather than a more complicated
algorithm dedicated to partially observable stochastic games. To learn more about
stochastic games, see Filar and Vrieze (1997); to learn more about partially observable
stochastic games, see Kaelbling et al. (1998) and Hansen et al. (2004).

2.2.4 Multi-agent reinforcement learning

Just as we can use single-agent reinforcement learning to solve Markov decision
processes, we can use multi-agent reinforcement learning to solve stochastic games.
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Multi-agent reinforcement learning (MARL) is both a class of machine learning
algorithms and a paradigm for applying the principles of reinforcement learning to
multi-agent systems.

Multi-agent reinforcement learning has challenges inherited from single agent rein-
forcement learning, such as the trade-off between exploration and exploitation, as well
as challenges specific to multi-agent reinforcement learning. The additional challenges
are the difficulty of choosing a learning goal for the agents, the non-stationary nature
of the agents’ learning and the need for the agents to coordinate their actions. The
learning goal of the agents must balance stability and adaptation. The overall goal of
multi-agent reinforcement learning is a challenge because the agents’ rewards may be
correlated and so cannot be maximised independently. Agents must coordinate their
actions so as to break ties between equally good actions.

Some researchers use single-agent reinforcement learning algorithms for multi-agent
reinforcement learning because single-agent algorithms can be simpler. ‘However, the
nonstationarity [sic] of the MARL problem invalidates most of the single-agent RL
theoretical guarantees’ (Buşoniu et al., 2008, p. 10). Researchers have developed a
number of multi-agent reinforcement learning algorithms, from Fictitious Play (Brown,
1951) to more recent examples:

• WoLF-PHC (Bowling and Veloso, 2002)

• AWESOME (Conitzer and Sandholm, 2003)

• Nash-Q (Hu and Wellman, 2003)

• MetaStrategy (Powers and Shoham, 2005)

A large number of other algorithms have been proposed (Sen et al., 1994; Littman,
1994; Matarić, 1997; Claus and Boutilier, 1998; Hu and Wellman, 1998; Singh et al.,
2000; Littman, 2001; Jafari et al., 2001; Suematsu and Hayashi, 2002; Kapetanakis and
Kudenko, 2002; Wang and Sandholm, 2002; Banerjee and Peng, 2003; Kononen, 2003;
Zinkevich, 2003; Greenwald and Hall, 2003; Weinberg and Rosenschein, 2004). For a
comparison of a number of algorithms, see Crandall and Goodrich (2010).

Shoham et al. (2007) outlines five different agendas for research in multi-agent rein-
forcement learning:

• Computational: how can we solve stochastic games in an online fashion, partic-
ularly to find Nash equilibria?

• Descriptive: how can we model living learning agents, such as animals or
people?

• Normative: which sets of learning algorithms converge to a Nash equilibrium?
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• Prescriptive, both cooperative and non-cooperative kinds: how should agents
learn? How can we design an agent that earns high rewards when it plays
against a range of other agents? (Both of Shoham et al.’s prescriptive agendas
have been merged into this one bullet point.)

Gordon (2007) adds two additional agendas:

• Modelling: how can we model real-world situations? What are appropriate
simplifications to a model?

• Design: ‘How can we best use this flexibility [that is inherent in most multi-agent
systems] to optimize criteria such as ease of learning, uniqueness of the final
learned policies, or predicted welfare of one or more of the agents?’ (Gordon,
2007, p. 392).

Our work in Chapters 4 and 5 relates to the design agenda of multi-agent reinforcement
learning. To learn more about multi-agent reinforcement learning, see the thorough
review article by Buşoniu et al. (2008).

2.3 Emergent multi-agent behaviours

We want to design multi-agent systems that exhibit turn-taking and other sequential
behaviours. Sometimes system designers will deliberately induce particular desirable
joint behaviours: we could consider this ‘designed’ behaviour. In multi-agent learning
systems, sometimes the agents behave in a way that surprises the system designer.
These surprising behaviours are often called ‘emergent’ behaviours.

Our research seems to embrace a dichotomy: we are interested in designing emergent
behaviours. However, in some ways this dichotomy is only apparent and in other ways
it is not a dichotomy. Chapter 3 is concerned with measuring the sequential multi-
agent behaviour that is colloquially called ‘turn-taking’ and we develop our turn-taking
metric in the context of emergent behaviours. In Chapter 4 we demonstrate techniques
for analysing agents’ reward functions to predict the behaviour of the agents. In some
ways, Chapter 4 is concerned with ‘designing emergent behaviours’ but it should be
considered as a way to predictably design behaviours that were previously considered
emergent. We discuss this distinction further in Chapter 4. Chapter 5 is concerned
with designing reward functions for stochastic games and therefore the behaviours
within belong to the conceptual category of designed behaviours. By extending the
range of possible joint sequential behaviours that are measurable and by providing
designers with methods to design reward functions, we hope to invade the domain of
emergent behaviours and stake a claim for the space of designed behaviours.
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2.3.1 What is emergence?

People intuitively assume that the complexity of a system is related to the sum of the
complexities of its component parts. However, ‘the whole is greater than the sum of
its parts’ (Aristotle, 1924, book 8.6.1045a:8-10). In fact, the complexity of a system can
increase much faster than the linear sum of its parts, often exponentially or factorially,
because of the many different ways to connect each part. Because people tend to
ignore the importance of the connections between parts, the difference between the
perceived ‘sum of the parts’ and the behaviour of the complete system seems to have
come from nowhere, to have emerged.

Monro (2007) explores definitions of emergence in the context of generative art in
his Masters thesis. Some examples of emergence are Langton’s ant (Langton, 1986),
Conway’s game of life (Gardner, 1970) and Craig Reynolds’ Boids (Reynolds, 1987).
Monro considers a number of definitions of emergence, including:

• ‘Complete knowledge of the construction of a system does not imply complete
knowledge of its behaviour’ (Monro, 2007, p. 18).

• ‘Simple rules give rise to complex behaviour’ (Monro, 2007, p. 20).

• ‘Many simple agents together produce complex behaviour’ (Monro, 2007, p. 21).

• ‘The fastest way to predict what the system is going to do is to simulate it (run
it and see what it does, if it is a computer system)’ (Monro, 2007, p. 23).

In the context of non-cooperative multi-agent systems, we may label a behaviour
‘emergent’ when it is in fact a Nash equilibrium, or some set of behaviours close to
a Nash equilibrium. Computation of a Nash equilibrium is difficult; more precisely,
it belongs to the computation complexity class (Arora and Barak, 2009) of PPAD-
complete problems (Chen and Deng, 2006). Consequently, a system designer may
have no faster way of computing the Nash equilibrium than by observing the system,
which fits with the final definition of emergence by Monro listed above.

Often engineers specifically design systems to have loosely coupled parts (Stevens
et al., 1974), decreasing the complexity of the whole given constant complexity of the
parts and reducing the surprising emergent behaviours of the completed system. (In
software development, emergent behaviours are usually called ‘bugs.’) However, if the
coupling between parts is not limited by design then the space of system behaviours
is bigger. For example, the one dimensional cellular automaton known as Rule 110
is Turing complete (Cook, 2004). Since apparently complex behaviours result from
simple rules, we propose exploring methods for crafting the behaviour of multi-agent
systems with tight coupling between the agents.
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2.3.2 Emergent communication

Our turn-taking metric in Chapter 3 is particularly designed for the context of emer-
gent communication. The study of emergent communication is useful for under-
standing the origins of human communication and language and also for analysing
the different ways that communication can emerge in artificial systems. Research in
emergent communication relates to a number of questions:

• What good can communication do for agents? (Gmytrasiewicz and Durfee,
2001)

• How can agents gain the ability to communicate when they start with no such
ability? (Quinn, 2001)

• How can mutually intelligible languages emerge? (Smith, 2002; Goldman et al.,
2007)

• What conditions result in truthful communication and what conditions result in
deception? (Floreano et al., 2007)

The emergence of language in the history of human life intrigues some psychologists
and biologists. Our species has a survival advantage by having language (Pinker,
1995). Communication is a cooperative behaviour, so emergent communication is
related to the evolution of cooperation (Axelrod and Hamilton, 1981). Researchers use
computer simulations to explore multi-agent games that approximate aspects of the
history of language; for example, see Cangelosi and Parisi (2002).

2.3.3 Emergent turn-taking

Human language emerged in a social, multi-agent context and conversation became
the central mode of language use (Sacks et al., 1974, p. 722). Turn-taking is a key
feature of conversation (Sacks et al., 1974, p. 722), so turn-taking and emergent
turn-taking are of direct interest to emergent-communication simulations. Because
the emergence of turn-taking is important to emergent communication, we frame
Chapter 3 in the context of emergent communications. Some researchers have studied
emergent turn-taking in its own right (Di Paolo, 2000; Iizuka and Ikegami, 2004),
while others assume turn-taking while studying other aspects of language (Goldman
et al., 2007) or ignore turn-taking entirely in their emergent-communication studies.

Emergent turn-taking bears some relation to cognitive radio and opportunistic spec-
trum access in wireless networks (Mitola and Maguire, 1999). We could use emergent
turn-taking for medium access control in self-organising networks of heterogenous
wireless systems. Researchers have already modelled interfering wireless networks
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as multi-agent cooperative or competitive games (Larsson et al., 2009; Leshem and
Zehavi, 2009; Yang et al., 2009); a kind of turn-taking is the optimal solution in some
cases (Larsson et al., 2009, p. 21). We can also think of medium access control in
computer networks as a kind of designed turn-taking. Some stochastic medium access
control methods such as slotted ALOHA display a degree of emergent turn-taking
behaviour (Tanenbaum, 2002). For more on this, see the discussion in Chapter 3
regarding the quantity of turn-taking present in groups of random agents.

Some psychological studies suggest that turn-taking may be linked to musical rhythm
in the human mind. Rhythmic perception and control are essential in both language
and music; perhaps people even use the same neural circuitry for musical rhythm
and speech prosody (Juslin and Laukka, 2003). Furthermore, Wilson and Wilson
(2005) believe that their oscillator model for turn-taking could also apply to musical
performance:

The model [for turn-taking in conversation] described here is intended as
a more detailed specification of that proposed by Sacks et al. (1974). . . . We
note the further possibility that other activities that are complex, rhythmic,
and interpersonally coordinated—notably, music performance—may be
governed by similar principles (see Jungers et al., 2002; Large and Jones,
1999; Large and Palmer, 2002). (Wilson and Wilson, 2005, p. 966)

Consequently, we can describe our search for the emergence of turn-taking and other
sequential behaviours as working toward an artificial model for the part of the human
mind that governs turn-taking in conversation and rhythmic coordination in musical
performance. By developing a metric for turn-taking and techniques for analysing
multi-agent systems that may or may not exhibit turn-taking behaviour, we pave
the way for research on more complicated sequential joint agent behaviours such as
musical rhythms.

2.4 Summary

The research areas and concepts that frame this dissertation are:

• Markov chains, Markov decision processes and reinforcement learning;

• multi-agent systems, normal form games, Nash equilibria, stochastic games and
multi-agent reinforcement learning;

• and emergent phenomena, especially emergent communication and emergent
turn-taking.
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The thesis builds on these areas and we assume that the reader has knowledge of these
concepts in later chapters. In particular, Chapter 5 makes great use of stochastic games
and Nash equilibria. Chapter 4 uses Markov chains, reinforcement learning, Nash
equilibria and emergent phenomena. Chapter 3 makes use of emergent phenomena,
especially emergent turn-taking, and multi-agent systems.
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Chapter 3

A Simple Metric for Turn-Taking in
Emergent Communication

Turn-taking is a sequential joint agent behaviour. In Chapter 4, we demonstrate how
to induce turn-taking in pairs of learning agents, but such a feat requires us to know
when agents are taking turns. Therefore, in this chapter, we devise a simple metric for
turn-taking. In addition to being useful as a demonstration of measuring sequential
joint behaviour in groups of learning agents, our turn-taking metric is useful in the
area of emergent communication. We analyse the turn-taking produced by random
agents; if turn-taking is a desirable behaviour in a stochastic multi-agent system, then
we must be able to distinguish deliberate turn-taking among the agents from random
behaviour that might result in some non-zero quantity of turn-taking. To validate and
demonstrate our turn-taking metric, we reinterpret two previously reported cases of
turn-taking (Di Paolo, 2000; Iizuka and Ikegami, 2004) and analyse a recorded human
conversation. While this chapter focuses on turn-taking as a potentially desirable
sequential joint multi-agent behaviour, the methodology we use could be applied
to construct metrics for other kinds of sequential joint behaviours. In particular, we
propose that metrics for multi-agent sequential behaviours should consider the time
scale of a behaviour (called ‘resolution’ in this chapter), the behaviour of random
agents and the differences between metric results and qualitative human judgements.

3.1 Introduction

‘Turn-taking’ can refer to a wide range of human social behaviours. Turn-taking in
human speech has been studied extensively (Sacks et al., 1974; Wilson and Wilson, 2005;
Stivers et al., 2009). In some contexts, turn-taking occurs in groups of machines (Di
Paolo, 2000; Iizuka and Ikegami, 2004) or groups comprised of people and machines
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Table 3.1: Two agents sharing a resource.

t 1 2 3 4
Agent 1 Tries to use resource Does not try Does not try Tries
Agent 2 Does not try Tries Does not try Tries

(Turunen et al., 2006; Raux and Eskenazi, 2008). Consider two agents that share a
resource that cannot be allocated to more than one agent at once. Each agent can
try to use the resource at each of a number of time steps, t = 1, 2, 3, . . . Suppose the
history of agents trying to use the shared resource is as in Table 3.1.

To what extent are agents 1 and 2 in Table 3.1 taking turns using the resource? Chao
and Thomaz’s study of the interaction between an anthropomorphic robot and people
lead them to a similar question: ‘What is an appropriate metric for good turn-taking?’
(Chao and Thomaz, 2010, p. 134). We propose to answer questions like this by
introducing a metric for the quantity of turn-taking in groups of identical agents that
share a single resource. We narrow our scope further by assuming a particular model
of how the resource behaves when more than one agent tries to take a turn at one
time. Our metric is a simple and intuitive one rather than a general one. However,
we believe that our metric is useful in a variety of situations where it is possible for
a group of agents to take turns perfectly, fail to take turns entirely, or have some
behaviour that falls between those extremes. Situations like this occur in ‘emergent
communication,’ where agents are learning to communicate. Agents learning to
communicate may need to take turns to be successful but may display a range of other
behaviours.

Frequently, groups of agents benefit from sharing information (Gmytrasiewicz and
Durfee, 2001; Floreano et al., 2007) or at least having reliable access to common
information (Amato et al., 2009). However, agents may not be innately endowed with
the ability to communicate. Some agents can learn to communicate, either by learning
a language common to the other agents (Grim et al., 2002; Smith, 2002; Goldman
et al., 2007; Ampatzis et al., 2008) or by reusing their non-communication-specific
abilities to create a communications channel (Quinn, 2001; Nolfi, 2005). Emergent
communication refers to cases where the ability to communicate emerges in a group
of adaptive agents that originally could not communicate. Wagner et al. (2003) and
Nolfi (2005) survey previous research in emergent communication and discuss the
conditions required for the emergence of communication.

Sometimes communication is over an interfering channel; turn-taking is one way of
defeating interference. People everywhere use turn-taking (Stivers et al., 2009) to
defeat the difficulties in understanding another speaker while they themselves are
talking. These difficulties relate to attention, short-term memory (Baddeley and Logie,
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1999; Baddeley, 2000) and the limitations of language processing (Christoffels, 2006).
Furthermore, turn-taking shapes human languages through its role in conversation:

It seems productive to assume that, given conversation as a major, if not
the major, locus of a language’s use, other aspects of language structure
will be designed for conversational use and, pari passu [Latin: equally],
for turn-taking contingencies (Sacks et al., 1974, p. 722).

The origins and characteristics of human language are the starting point of many
emergent-communication studies (Cangelosi and Parisi, 2002). Realistic models of the
emergence of communication should therefore include turn-taking.

Some emergent-communication studies assume that the group of agents already
possesses the ability to coordinate turn-taking (Goldman et al., 2007, Definition 19).
Other studies have specifically examined the emergence of turn-taking (Di Paolo, 2000;
Iizuka and Ikegami, 2004). One application of emergent turn-taking is medium access
control for self-organising networks of heterogenous wireless embedded systems.
Sometimes researchers model interfering wireless networks as agents engaged in
cooperative or competitive games (Larsson et al., 2009; Leshem and Zehavi, 2009; Yang
et al., 2009). The optimal solution to some of those games is a kind of turn-taking
where agents transmit one at a time (Larsson et al., 2009, p. 21). Our focus in this
chapter is on describing agents’ behaviours rather than controlling those behaviours.
A quantitative measure of turn-taking is required to facilitate further research in
emergent turn-taking. Quantifying turn-taking facilitates algorithmic optimisation
and machine learning of turn-taking behaviour.

Our contributions to the field of emergent communication are:

• We propose ττ, a quantitative measure for turn-taking that integrates the con-
cepts of fairness and efficiency. See Section 3.2.

• We derive the turn-taking performance of random agents in Section 3.3. We
consider how to evaluate distributions and individual values of ττ against the
performance of random agents.

• We demonstrate the suitability of our turn-taking metric by re-interpreting
two previously reported cases of turn-taking in simulated agents in Section 3.4
(Di Paolo, 2000) and Section 3.5 (Iizuka and Ikegami, 2004). We find that our
computed values of ττ are consistent with the conclusions drawn by Di Paolo,
and Iizuka and Ikegami. We present an application of our metric in Section 3.6
where we analyse the turn-taking behaviours present in a recorded human
conversation.

• We have released an open source software implementation of ττ, which we
describe in Section 3.7.
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We explore related work in Section 3.9. We discuss future work on alternative metrics
and possible extensions to ττ in Section 3.8 and draw conclusions in Section 3.10.

3.2 A simple turn-taking metric, ττ

We propose a simple metric for turn-taking in groups of identical agents that share a
limited resource. Our metric transforms the agents’ actions into a single real number
representing the quantity of turn-taking present. We consider the attempts of each
agent to use the shared resource to compute a real-valued turn-taking allocation for
each agent, given a particular range of times. The turn-taking metric, ττ(t, r), is the
product of the fairness and efficiency of the agents’ allocation. The parameters t and r
represent the time that the turn-taking value refers to and the time scale, or ‘resolution,’
of the turn-taking measurement, respectively. Turn-taking behaviour may or may not
be valuable to the agents. In general, our turn-taking metric is not inherently related
to the agents’ utilities but turn-taking is a valuable system behaviour in a number of
emergent-communication studies (Di Paolo, 2000; Iizuka and Ikegami, 2004).

We assume all sequences are discrete in time and that all agents in the group simul-
taneously select actions to take for a particular time step, t. Some of those actions
may involve trying to use the shared resource. We summarise agent n’s actions with a
‘usage attempt sequence’, defined as An(t) ∈ {0, 1}, where An(t) = 1 indicates that
agent n is attempting to use the shared resource at time t, and An(t) = 0 indicates
that agent n is not attempting to use the shared resource.

3.2.1 Resource allocation model

The resource allocation model provides a set of rules for allocating the shared resource.
We need a rule, for example, if more than one agent tries to use the resource at a
particular time (a collision). If none of the agents attempt to use the resource at
a particular time, then the resource is unallocated. When only one agent makes a
resource usage attempt, that agent gets the resource for that particular time. If all the
agents could use the resource on each time step, then sharing the resource through
turn-taking would be unnecessary. Resource collisions must give a lower value of
the turn-taking measure than alternating single uses so as to match intuition. For
simplicity, we stipulate that if more than one agent tries to use the resource at once,
then no agent gets the resource. This way, the turn-taking of a usage attempt sequence
where every time step has a collision is the same as a usage attempt sequence where
no agent ever makes a usage attempt. Table 3.2 summarises our resource allocation
model.
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Table 3.2: Resource allocation model summary.

Resource usage attempts Allocations
No agent makes a resource usage attempt No agent gets the resource

Only one agent makes a resource usage attempt That agent gets the resource
More than one agent makes a usage attempt No agent gets the resource

Each agent contributes to global turn-taking by taking its share of turns, that is, using
the shared resource without collision on some time steps. The ratio of the number of
time steps that an agent uses the shared resource without collisions to the resolution is
its turn-taking ‘allocation.’ Within a set of agents, N , we define agent n’s turn-taking
allocation over the time range t to t + r− 1 as:

αn(t, r) =
1
r

t+r−1

∑
t′=t

(
An(t′) ∏

m∈N ,m 6=n

[
1− Am(t′)

])
(3.1)

where r and t are in Z and r > |N |. The expression An(t′) ∏m∈N ,m 6=n

[
1− Am(t′)

]
takes a value of 1 if agent n and only agent n is attempting to use the shared resource
at time t′ and equals 0 otherwise. Observe that αn(t, r) ∈ [0, 1].

3.2.2 ττ is the product of fairness and usage efficiency

The allocation of the resource can only be ‘fair’ if all agents get access to it within a
period of time corresponding to r. The resource usage fairness is therefore defined for
a particular time, t, a particular resolution, r, and a set of agents N as:

f airness(t, r) =


0 if ∑n∈N αn(t, r) = 0

|N |minn
[
αn(t, r)

]
∑n∈N αn(t, r)

otherwise

(3.2)

Thus we define fairness to be the normalised ratio of the allocation of the agent with
the smallest allocation to the sum of the allocations for all agents, in the time range t to
t + r− 1. For a truly fair situation, f airness(t, r) = 1; for an unfair system, when one
agent misses out altogether (say), fairness is zero. In general, f airness(t, r) ∈ [0, 1].

This definition of fairness reflects our intuitive linkage between the human concepts of
taking turns and of fairness. Jain’s fairness index (Jain et al., 1984) is unsuitable in this
case because it assigns non-zero fairness values in cases where one agent’s allocation
is zero. Other fairness metrics without the problem in Jain’s metric are possible (Chen
and Zhang, 2005; Lan et al., 2009). We discuss the possibility of using other fairness
metrics in Section 3.10. Our chosen fairness metric matches our efficiency metric:
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the numerator of the efficiency metric is the same as the denominator of the fairness
metric to simplify the expression for the turn-taking metric.

As well as being fair, our intuition says that turn-taking must be ‘efficient.’ We define
the usage efficiency to be the sum of the agents’ allocations:

efficiency(t, r) = ∑
n∈N

αn(t, r) (3.3)

In effect, the expression for efficiency(t, r) is the ratio of the number of steps with a
single resource usage attempt to the total number of steps within the resolution. For
example, if An(t) = 1 for all n and t, then efficiency(t, r) = 0; similarly if all An(t) = 0
then efficiency(t, r) = 0. On the other hand, if An(t) = 1 and Am(t) = 0 for all m 6= n
and all t, then efficiency(t, r) = 1.

A different definition of efficiency could be more appropriate in some emergent-
communication contexts. We could use the Pareto efficiency from economics (Mus-
grave and Musgrave, 1984; Brams, 2008), for example. We have chosen our definition
to match our intuitive perception of turn-taking.

We define the degree of turn-taking, ττ, as the product of the resource usage efficiency
and the fairness:

ττ(t, r) = efficiency(t, r)× f airness(t, r) (3.4)

= |N |min
n

[
αn(t, r)

]
(3.5)

where ττ(t, r) ∈ [0, 1]. When ττ(t, r) = 1, there is perfect turn-taking between all the
agents in the time range t to t + r− 1; in this case each agent makes the same number
of resource usage attempts, no resource usage attempts collide and the agents use
the resource on every time step. When ττ(t, r) = 0, there is no turn-taking at all;
in this case at least one agent has zero allocation. We can understand the values of
ττ(t, r) in terms of fairness and efficiency, as in Eq. (3.4), or in terms of the allocation
of the agent with the smallest allocation, as in Eq. (3.5). For example, if ττ(t, r) = 0.4
then the agent with the fewest non-colliding resource usage attempts has 40% of the
allocation it requires for perfect turn-taking.

3.2.3 Choosing a resolution

It is essential to choose an appropriate resolution, r, when calculating ττ(t, r). Perfect
turn-taking is impossible if the resolution is less than the number of agents: we must
choose r ≥ |N |. If the turn-taking exhibits a periodicity, then it would be reasonable
to select r as equal to the period or an integer multiple of the period. In the periodic
case, ττ(t, r) is precise only for turn-taking periods that are perfect divisions of r.
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Considering an extreme case, suppose that N = {1, 2} with

A1(t) = 1, 0, 1, 0 and

A2(t) = 0, 1, 0, 1 for t = 1, 2, 3, 4.

In this case ττ(1, 4) = 1, but ττ(1, 3) = 2/3. For all t and r, efficiency(t, r) = 1,
because exactly one agent attempts to use the resource at each time step. Note
that f airness(1, 4) = 1 because both agents get 2 turns each, but f airness(1, 3) =
2 min[2, 1]/(2 + 1) = 2/3. In this case, since the turn-taking has a period of 2, ττ(t, 3)
is a less accurate measure of the turn-taking than ττ(t, 4).

Consider perfect turn-taking with period L, ττ(t, L) = 1 for all t. This implies
ττ(t, r) = 1 for r = kL, where k ∈ N. However, ττ(t, r) = 1 is not guaranteed
for r 6= kL. If r mod |N | = 0, then |N |!|N |/r usage attempt sequences have perfect
turn-taking, otherwise, no usage attempt sequences have perfect turn-taking. As
r increases, the accuracy of ττ(t, r) increases because ττ(t, r) averages over more
periods of the turn-taking so ending alignment has less effect. Also, with larger r,
ττ(t, r) will more accurately report turn-taking with longer periods. However, as r
increases, ττ(t, r) also becomes less specific to a particular time t. Thus we need to
trade time localisation for accuracy.

3.3 Measuring the turn-taking of random agents

After performing a stochastic experiment with agents and measuring the turn-taking
of the result, we have the question ‘What value of ττ is sufficient to indicate that
turn-taking behaviour is present rather than some other behaviour that, by chance,
looks like turn-taking?’ We suggest that designed or learnt behaviour should do better
than random actions, otherwise there is no value in the design or learning. Specifically,
agents should significantly exceed the mean ττ(t, r) of all possible probabilistic
agents whose probabilities are independent of time and the other agents’ actions. We
argue that it is sufficient to show that the agents being considered exceed the turn-
taking of the probabilistic agents with the highest mean value of ττ(t, r), henceforth
called the ‘best’ possible probabilistic agents. Specific values of ττ(t, r) from an
experiment should be compared against the distribution of ττ(t, r) values from the
best probabilistic agents.

For example, suppose there is a particular system that might display turn-taking for
N = {1, 2, 3} and r = 30. If the experimenter samples the turn-taking of the system for
100 independent trials and the mean turn-taking value is 0.3 with a standard deviation
of 0.1, can the experimenter say that turn-taking has arisen? We can calculate the
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probability that such turn-taking occurred by chance if we know the distribution
of ττ(t, 30) for groups of 3 random agents with the best possible usage attempt
probabilities. As we will calculate formally below, for r = 30 and |N | = 3, the
distribution has a mean of 0.27 and a standard deviation of 0.12. Our statistical null
hypothesis is that the mean ττ(t, 30) of the system is less than or equal to the mean
ττ(t, 30) of the random agents. We test this hypothesis using a one-sided t-test with
unequal variances and sample sizes (Snedecor and Cochran, 1989). The t-test assumes
normal distributions, but is robust to violations of this assumption when the sample
sizes are large, as is the case here. We get a one-sided p-value of 0.03 indicating that
there is a 3% chance that the system actually has a lower mean ττ(t, 30) value than the
random agents. So, at the 95% confidence level, we should reject the null hypothesis,
and accept the alternative hypothesis that the system has a larger mean turn-taking
than we could expect due to chance.

Suppose that we have a group of probabilistic agents, where we know the probability
of agent n attempting to use the shared resource, p

[
An(t) = 1

]
, for all agents.

Let these probabilities be independent of the other agents’ actions and of time, so
p
[
An(t) = 1

]
= Pn. Without loss of generality, let us assume that N = {1, 2, . . . , N}

where N is the number of agents. We view the turn-taking value of these probabilistic
agents as a random variable, denoted TT(N, r, P1, P2, . . . , PN). The distribution of
TT(N, r, P1, P2, . . . , PN) depends on the resolution, r, the number of agents, N, and
the probabilities, Pn for n ∈ N . We can calculate this distribution from all possible
usage attempt sequences at some resolution, or estimate it from a random sample of
usage attempt sequences.

We define the best possible probabilistic agents as the ones with the largest expected
turn-taking value, E

[
TT(N, r, P1, P2, . . . , PN)]. Because ττ(t, r) assumes that all agents

are identical, a unique maximum for E
[
TT(N, r, P1, P2, . . . , PN)] will occur only when

Pn = P for n ∈ N . Based on the resource allocation model of Eq. (3.1), each agent’s
average allocation is maximised if each agent takes an average of one turn per N time
steps. Therefore, the maximum of E

[
TT(N, r, P1, P2, . . . , PN)] is when P = 1/N. If

Pn = 1/N for all agents, then TT(N, r, P1, P2, . . . , PN) is a random variable representing
the turn-taking of the best possible agents and will be henceforth referred to as
TT(N, r)best. Table 3.3 shows estimates of the means and standard deviations of
TT(N, r)best for various numbers of agents at resolutions that are various multiples of
N, estimated from 106 samples of different possible usage attempt sequences.

We can evaluate particular values of ττ(t, r) for some N and r against the distribu-
tion of TT(N, r)best. If a group of agents takes turns with some value of ττ(t, r),
then the probability that random agents would not achieve at least that same value,
p
[
TT(N, r)best < ττ(t, r)

]
, is the probability that the group of agents is taking turns

by some means other than chance. However, for very small resolutions, the large
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Table 3.3: The mean, E(TTbest), and standard deviation, σ(TTbest), turn-taking
values for the best probabilistic agents for various resolutions, r, and numbers of
agents, N. These values are estimates computed from a population of 106 samples
of the possible usage attempt sequences.

A r = N r = 2N r = 10N r = 100N r → ∞
2 E(TTbest) 0.13 0.23 0.37 0.46 0.5

σ(TTbest) 0.33 0.27 0.14 0.045 0
3 E(TTbest) 0.019 0.095 0.27 0.39 0.44

σ(TTbest) 0.14 0.20 0.12 0.041 0
4 E(TTbest) 0.0029 0.042 0.22 0.36 0.42

σ(TTbest) 0.054 0.14 0.11 0.038 0
5 E(TTbest) 0.00044 0.018 0.19 0.34 0.41

σ(TTbest) 0.021 0.094 0.098 0.036 0
10 E(TTbest) 0.00 0.00034 0.12 0.29 0.39

σ(TTbest) 0.00 0.013 0.077 0.031 0
100 E(TTbest) 0.00 0.00 0.0080 0.23 0.37

σ(TTbest) 0.00 0.00 0.027 0.022 0

variance in the distribution of TT(N, r)best means that only low confidence levels can
be achieved. If there is a population of turn-taking values, one can compare that
population with the distribution of TT(N, r)best. We can evaluate turn-taking at any
resolution if we have a large enough sample of turn-taking values, but using single
values of ττ(t, r) is only meaningful with large resolutions.

We now derive the lim
r→∞

E
[
TT(N, r)best

]
as a function of the number of agents, N. The

expected allocation for random agents as r → ∞ is:

lim
r→∞

E
[
αn(t, r)

]
= P ∏

m∈N ,m 6=n
(1− P) (3.6)

= P(1− P)N−1 (3.7)

The best random agents have usage attempt probabilities P = 1/N:

lim
r→∞

E
[
αn(t, r)best

]
=

1
N

(1− 1/N)N−1 (3.8)

The expected value of TT(N, r)best can be calculated using Eq. (3.5) in the limit as
r → ∞:

lim
r→∞

E
[
TT(N, r)best

]
= N min

n

(
lim
r→∞

E
[
αn(t, r)best

])
(3.9)

= N
(

1
N

(1− 1/N)N−1
)

(3.10)

=
(

N − 1
N

)N−1

(3.11)
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Eq. (3.11) is at its maximum of 0.5 at N = 2 and monotonically decreases with
increasing numbers of agents, approaching 1/e in the limit:

lim
N→∞

lim
r→∞

E
[
TT(N, r)best

]
→ 1/e ≈ 0.37 (3.12)

The trend towards this limit is evident in Table 3.3. Note that our formulation
of limr→∞ E

[
TT(N, r)best

]
bears some similarity to limited-contention protocols for

computer network medium access control (Tanenbaum, 2002, p. 262).

3.4 Application of the metric to work by Di Paolo

Di Paolo (2000) simulated pairs of mobile agents that used acoustic signalling to
approach each other. Each agent had an acoustic sensor and a motor on each half of its
round body, and a single acoustic transmitter. Recurrent neural networks controlled
the agents. Di Paolo examined a number of aspects of his simulation. We only expand
on the interpretation of the turn-taking behaviour of his agents’ acoustic signalling;
we add nothing to his other results. Each of Di Paolo’s agents could detect the other
agent’s position based on the other’s simulated acoustic signalling. Di Paolo found
that the agents would activate their transmitters alternately at a constant frequency
and that this alternating transmission helped them move better. The acoustic channel
was additive and limited in range; one agent’s signalling interfered with the other’s
signalling.

3.4.1 Defining the resource usage attempt sequences

For our purposes, Di Paolo’s agents take turns using the shared resource of the
simulated acoustic channel. We focus on Fig. 13 of Di Paolo’s paper that shows the
alternating signalling of his two agents. We extracted the numerical values from Di
Paolo’s graph to make Fig. 3.1. The graphical extraction process introduces small
errors but does not significantly affect our results. The domain of Di Paolo’s original
graph is 200 units of time. We have quantised the domain to 2000 time steps across
the graph, 10 time steps for each of Di Paolo’s units. Henceforth, we abandon Di
Paolo’s original indexing of time that ranges between 400 and 600, and refer only to
our new indices that range between 0 and 2000. The signalling in Fig. 3.1 occurs after
the agents’ learning has converged to a solution to their coordinated motion task. Di
Paolo’s simulation has two agents so N = {1, 2}. The agent with a dashed line in
Fig. 3.1 is agent 1 and the agent with the solid line is agent 2.

The turn-taking values depend strongly on how we define the usage attempt sequences;
Di Paolo does not specify a way of defining the turn boundaries. Because we cannot
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Figure 3.1: Turn-taking emerged in a simulation by Di Paolo. The solid line
represents one agent’s signalling and the dashed line represents the other’s. We
extracted the data for this graph from Fig. 13 of Di Paolo (2000).

assign specific meanings to signal features, we arbitrarily define the usage attempt
sequences by thresholding the values in Fig. 3.1: for agent n, An(t) = 1 if Signaln(t) >

2 and An(t) = 0 otherwise. Setting the threshold higher would result in fewer
collisions but also less productive use of the channel. Fig. 3.2 shows the resulting
resource allocation attempt sequences A1 and A2 plotted against time. Using a
threshold is arbitrary and the value of the threshold is arbitrary, but the resulting
usage attempt sequences serve to illustrate our turn-taking metric. Di Paolo observes
that:

Since agents have no way of knowing of the presence of the other but
through acoustic coupling an efficient way of doing this [completing their
coordinated motion task] is by alternating the production of signals and
so minimizing overlap. (Di Paolo, 2000)

Fig. 3.3 shows that the usage attempt sequences have some collisions; perhaps Di
Paolo’s agents try to minimise collisions but still some collisions are present.

3.4.2 Choosing a resolution

Fig. 3.3 shows that the two agents alternate their usage attempts much of the time,
with small gaps and overlaps in between. Intuitively, we expect some turn-taking
to be present. However, the resource is mostly unused in the range of time around
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Figure 3.2: Two agents from Di Paolo (2000) share an acoustic resource. Their
resource usage attempt sequences, A1 and A2, are plotted against time using data
from Fig. 3.1.
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Figure 3.3: Analysis of the resource usage attempt sequences, A1 and A2, from
Fig. 3.2. Collisions occur when A1(t) = A2(t) = 1 and the channel remains
unused when A1(t) = A2(t) = 0. Much of the time, however, only one of A1(t)
or A2(t) equals 1.

327 < t < 672, aside from a collision around t = 450; this time range should get low
turn-taking values. Our choice of resolution, r, should be small enough to discriminate
this low turn-taking time range from the rest of the sequence.

The second half of Fig. 3.2 has 8 pulses of A1 and 7 pulses of A2, giving about 7 1
2 peri-

ods of turn-taking in 1000 time steps. This suggests that r = 133 would be reasonable.
Fig. 3.4 shows the mean turn-taking over time as a function of the resolution and illus-
trates the effects of changing the resolution described in Section 3.2.3: ττ(t, r) mostly
increases with increasing r, but has ripples with local maxima at r ≈ r0, 2r0, 3r0, . . .
and local minima at r ≈ 1.5r0, 2.5r0, 3.5r0, . . ., where r0 is an estimate of the period
of turn-taking present in A1 and A2. By inspection, r0 = 125, closely matching our
choice of r = 133.
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Figure 3.4: Mean turn-taking over time, ττ(t, r), generally increases with resolu-
tion, r, but has ripples with local maxima occurring near integer multiples of the
period of turn-taking in the usage attempt sequences. The positions of these local
maxima can be used to estimate the period of turn-taking.

3.4.3 Results

Fig. 3.5 shows the variation of ττ(t, 133) over time. The domain of Fig. 3.5 does not
extend to the last 133 time steps; calculating ττ in the last 133 time steps would
require values for the usage attempt sequences for times with t > 2000. Because we
compute ττ(t, r) from the values of An(t) from t to t + r − 1, ττ(t, r) refers to the
turn-taking in the next r steps. The low turn-taking range at 327 < t < 672 is correctly
identified; ττ(t, 133) < 0.2 for 250 < t < 599. Because ττ(t, r) refers to the next r
steps, it makes sense that the low turn-taking time range occurs earlier in ττ(t, r)
than it does in A1(t) and A2(t). After t = 599, most of the graph exceeds 0.45, the
maximum expected turn-taking at a resolution of 133 for pairs of random agents.

Table 3.4: Mean and standard deviation over time for ττ, efficiency and fairness
at r = 133.

Standard
Metric Mean deviation

ττ(t, 133) 0.54 0.29
efficiency(t, 133) 0.66 0.28
f airness(t, 133) 0.70 0.33

From Table 3.4, we can see that turn-taking is present on average over the entire
sequence. Using the methods described in Section 3.3, we estimated the distribution
of TT(2, 133)best with 106 samples. The probability that random agents will achieve
a turn-taking value of at least 0.54 is 0.031. Therefore, for a confidence of 95%,
turn-taking at a resolution of 133 is present on average over the sequence.
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Figure 3.5: Turn-taking with r = 133, ττ(t, 133), varies with time. A period of
low turn-taking is present at 277 < t < 580. The expected turn-taking with a
resolution of 133 for pairs of random agents, E

[
TT(2, 133)best

]
, has a value of 0.45

and is plotted as a horizontal dashed line.

The large standard deviation of ττ(t, 133), 0.29, is due to the period of low turn-taking
time range in the first half of the sequence; the mean of ττ(t, 133) in the second half
of the sequence is 0.67, with a standard deviation of 0.12. In the time range where
turn-taking does not seem to be present, 275 < t < 575, the mean turn-taking is 0.003
indicating no turn-taking with probability > 99% as compared to random agents.

Di Paolo observed the anti-phase locking of the signalling in Fig. 3.1 and made the
qualitative assessment that turn-taking was present in the signalling. He also showed
that the internal activations of his agents’ neural networks were strongly negatively
correlated in periods of high qualitative turn-taking and only weakly negatively
correlated in periods of low qualitative turn-taking (Di Paolo, 2000). Our turn-taking
measure ττ(t, r) matches Di Paolo’s qualitative judgement.

Our threshold value choice for Di Paolo’s data is arbitrary; perhaps a different
threshold would be better. Fig. 3.6 shows the mean turn-taking of Di Paolo’s agents
with a resolution of 133, ττ(t, 133), for different thresholds. The maximum of Fig. 3.6
is 0.55 at a threshold of 1.86. For our previously chosen threshold of 2, we have a
mean turn-taking of 0.54 which is close to the maximum. Since our selected threshold
is on a flat part of the graph, a slightly different threshold would produce similar
results.

3.5 Application of the metric to work by Iizuka and Ikegami

Iizuka and Ikegami (2004) simulated pairs of agents that moved in a uniform, flat
space and took turns chasing each other. Each agent had a circular body with a
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Figure 3.6: Mean turn-taking of Di Paolo’s agents at a resolution of 133, ττ(t, 133),
as a function of the threshold for selecting An(t) values. The expected turn-taking
with a resolution of 133 for pairs of random agents, E

[
TT(2, 133)best

]
, has a value

of 0.45 and is plotted as a horizontal dashed line.

motor on either side and a recurrent neural network to control the motors. A genetic
algorithm selected the weights in the agents’ neural networks; an agent’s fitness
depended on how well it predicted its partner’s motion and how well it took turns
chasing its partner. The fitness increased as Iizuka and Ikegami simulated more
generations, so we expect greater turn-taking in later generations. Iizuka and Ikegami
found that the agents successfully took turns chasing each other, moving regularly in
earlier generations and chaotically in later generations.

Iizuka and Ikegami gave us unpublished data from the simulation they published
in 2004, including the simulated motion paths and agent role sequences for three
different pairs of agents from generations 3000, 5000 and 8000. For each generation, we
define the set of agents as N = {1, 2}. At each of 105 time steps in each generation, an
agent can be the chaser, the evader or neither; an agent in the evader role is taking ‘its
turn’ (Iizuka and Ikegami, 2004, p. 4). For the purposes of calculating ττ(t, r), these
agent role sequences are the usage attempt sequences. Fig. 3.7 shows the simulated
motion paths for one of the agents of each pair.

3.5.1 Choosing resolutions

For the agents from generation 3000, there is a definite periodicity of 61 to the usage
attempt sequences. There are only 849 of 105 time steps (0.85%) where A1(t) 6=
A1(t + 61) or A2(t) 6= A2(t + 61). This almost perfect periodicity is unsurprising,
since Iizuka and Ikegami find that the turn-taking of agents from generation 3000
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Figure 3.7: Each subfigure shows a motion trace for one agent of the pair from
a particular generation of Iizuka and Ikegami’s simulation (Iizuka and Ikegami,
2004).

is ‘regular’ and immune to noise (Iizuka and Ikegami, 2004, p. 9). Fig. 3.7a shows
that the agents’ locations lie on an annulus, apart from an initial trail at the top of the
figure.

For the agents from generation 5000, there is a weak periodicity of around 95 in
the usage attempt sequences. However, there are 0.10851× 105 of 1× 105 time steps
(10.8%) where A1(t) 6= A1(t + 95) or A2(t) 6= A2(t + 95). As shown in Fig. 3.7b, the
motion of the agents from generation 5000 seems to have a number of similarly shaped
loops, but it lacks the definite regularity of the agents from generation 3000.

The agents from generation 8000 do not have periodic or semi-periodic usage attempt
sequences because they are ‘chaotic’ turn-taking agents. ‘Beyond 6,000 generations,
patterns change from regular to chaotic’ (Iizuka and Ikegami, 2004, p. 13). Fig. 3.7c
shows the irregular motion of one of the agents from generation 8000. Because there
is no discernible single period, we use the resolution selection method presented in
Section 3.4.2 for Di Paolo’s experiment. There are 473 turn changes in 105 time steps,
which suggests a resolution of 105/473 ≈ 211.

3.5.2 Results

Fig. 3.8 shows the first 1000 time steps of the usage attempt sequences and the values
of ττ(t, r) for the three pairs of Iizuka and Ikegami’s agents from generations 3000,
5000 and 8000. The remainder of the sequences are similar to the second half of Fig. 3.8.
The turn-taking is lower at the beginning of the sequences for all three generations.
We believe this is because it takes a little while for the agents to start their turn-taking
behaviour. The top of Fig. 3.7a shows a long trail from the start of the agents’ motion
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Figure 3.8: The usage attempt sequences and values of ττ(t, r) over time for
Iizuka and Ikegami’s agents from generations 3000 (solid line, r = 61), 5000
(dotted line, r = 95) and 8000 (dashed line, r = 211).

which leads into the regular motion; this corresponds to the low turn-taking at the
start of the solid line in Fig. 3.8.

Table 3.5 compares the means and standard deviations of turn-taking values for the
three different pairs of agents and for random agents at the same resolutions. The
values for random agents were estimated from populations of 106 samples. All three
generations have mean values that significantly exceed the expected turn-taking of
random agents at the same resolution. With increasing generation, the turn-taking
increases on average, but the spread and resolution also increase. This is consistent
with the highly regular periodic behaviour of the agents in generation 3000, the less
perfect periodic behaviour in generation 5000 and the chaotic behaviour in generation
8000. Not only is the mean turn-taking value of the agents from generation 8000
higher than those of the best probabilistic agents, but the standard deviation of the
turn-taking is also much larger. Fig. 3.9 shows a box plot of the turn-taking values
of the agents in the three different generations, illustrating the increasing median
quantity of turn-taking as well as the increasing inter-quartile range.
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Table 3.5: The means and standard deviations of ττ(t, r) over time from Iizuka
and Ikegami (2004) and corresponding values for pairs of random agents at the
same resolutions.

Iizuka and Ikegami data Random agents
Mean Standard

Generation r ττ(t, r) deviation ττ(t, r) E(TT(2, r)best σ(TT(2, r)best
3000 61 0.57 0.023 0.43 0.081
5000 95 0.62 0.056 0.44 0.065
8000 211 0.76 0.19 0.46 0.044

The agents from generation 8000 only take turns in the presence of sensor noise (Iizuka
and Ikegami, 2004, p. 6), but their behaviour is definitely unlike the turn-taking
produced by any probabilistic agents whose probabilities are independent of time
and the other agents’ actions. This is unsurprising since the agents are coupled and
have memories of the past. The erratic behaviour of the agents from generation 8000
makes it hard to get an intuitive grasp on how well the agents are taking turns. This
highlights the strength of using a quantitative turn-taking metric. Our metric, ττ(t, r),
identifies turn-taking even where intuition fails and our comparison to random agents
reveals that the turn-taking behaviour of the agents does not arise by chance. The
increased mean value of ττ(t, r) with increasing generation is unsurprising given
that Iizuka and Ikegami designed their agents’ fitness function to include a term for
turn-taking behaviour. In Section 3.9, we compare ττ(t, r) in the context of Iizuka and
Ikegami’s experiment with their own turn-taking metric.

3.6 Application of the metric to a human conversation

We now apply the metric to the analysis of a recorded human conversation and we
discuss how our quantitative results highlight social effects that may be otherwise
overlooked. The behaviour of Di Paolo’s simulated agents in Section 3.4 was amenable
to intuitive analysis in his original paper and our quantitative results support his
conclusions; in Section 3.5, Iizuka and Ikegami’s agents behaved so as to maximise
their fitness function which included an explicit term for turn-taking. On the other
hand, a recorded conversation is more difficult to analyse: extracting the usage attempt
sequence is more complicated, the duration of each turn varies greatly and turns do
not occur regularly. Furthermore, the metric assumes that all agents are identical, as
described in Section 3.2, but people are all different. While we expect turn-taking
to be present in conversation in general (Sacks et al., 1974; Stivers et al., 2009), the
research on turn-taking in sociology gives us no specific insights to the particular
conversation we analyse here.



3.6 APPLICATION OF THE METRIC TO A HUMAN CONVERSATION 49

3000 5000 8000
Generation

0.0

0.2

0.4

0.6

0.8

1.0
τ

τ
(t

,r
)

Figure 3.9: Box plot of the distributions of the turn-taking values of Iizuka and
Ikegami’s agents over time. The bold centre line is the median, the box extends to
the upper and lower quartiles and the whiskers span the range. For generations
3000, 5000 and 8000, r = 61, 95 and 211 respectively.

We measure the quantity of turn-taking present in a one minute excerpt from a corpus
of speech called ‘COnversational Speech In Noisy Environments’ (COSINE). The
COSINE corpus was created by Stupakov et al. (2009) to assist studies on automatic
speech recognition and related topics. The corpus includes 33 conversation sessions
with two to seven participants per session. Each participant wore an array of seven mi-
crophones and participated in natural conversations in noisy environments. Stupakov
et al. (2009) and Stupakov et al. (2012) describe the data collection and transcription.
We analyse a conversation from Session 2, starting 7 minutes 47.5 seconds into the ses-
sion and ending at 8 minutes 47.5 seconds. Our source data are the speech recordings
from the close-talking microphone on each person’s array, which has the least noise
and the best isolation between speakers. Four speakers, two male and two female
young adults, introduce themselves to each other and converse in fluent English. The
set of agents is N = {F1, M2, F3, M4} so that each agent index also indicates the
gender of the speaker.
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Figure 3.10: Sound amplitude waveforms and the extracted usage attempt se-
quences for the four speakers for the chosen excerpt from the COSINE corpus
(Stupakov et al., 2009).

3.6.1 Defining the resource usage attempt sequences

As in Section 3.4, we must extract usage attempt sequences from continuous-valued
signals. We want the usage attempt sequence to represent the times when each
speaker is talking. Transforming a speech signal into a binary valued signal indicating
when the speaker is talking is the well-studied problem of voice activity detection;
for one example algorithm, see Sohn et al. (1999). We use a simpler approach: each
audio signal is processed with a one-pole high pass filter with a cut-off frequency
of 478 Hz followed by an envelope follower. When the envelope of the audio signal
exceeds a hand selected threshold, we deem that agent to be speaking. We hand select
a different threshold for each speaker to provide a balance between rejecting noise
and failing to recognise speech. The resulting usage attempt sequences have some
noise, but have sufficient quality for our purposes. The original audio is at 44100
Hz, but we down-sample the usage attempt sequences to 100 Hz on the assumption
that a person will talk for at least 10 ms at a time and also to decrease the required
computational time. Fig. 3.10 shows the waveforms of the four speakers after the high
pass filter preprocessing stage and the resulting usage attempt sequences. Analysing
the turn-taking in Fig. 3.10 would be difficult without a turn-taking metric.
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3.6.2 Choosing a resolution

Fig. 3.10 shows that the usage attempt sequences do not form an obvious pattern.
However, agent F3 talks while the other agents are not talking for a time between about
22.5 seconds and 27.5 seconds. We expect low turn-taking for this time period while it
is possible that turn-taking is present at other times. In order to discriminate this 5
second period of no turn-taking, we must use a resolution of no more than 5 seconds.
On the other hand, smaller windows suffer from sensitivity to ending alignment as
discussed in Section 3.2.3. With this balance in mind, we chose a resolution of 500
ten-millisecond time steps for a total window size of 5 seconds.

3.6.3 Results

Fig. 3.11 shows the calculated turn-taking at a resolution of 5 seconds as a function
of time. Only on two occasions does the turn-taking of the four people exceed
E
[
TT(4, 500)best

]
, the expected turn-taking of groups of four random agents. We might

find the overall low quantity of turn-taking surprising for a human conversation. Sacks
et al. (1974) found that some form of turn-taking is a usual feature of conversation
and indeed the four speakers in our conversation follow Sacks et al.’s turn trade
rules (Sacks et al., 1974, p. 704). However, Sacks et al. observed that in unstructured
conversation, ‘Relative distribution of turns is not specified in advance’ (Sacks et al.,
1974, p. 701), whereas our turn-taking metric requires a fair distribution of speaking
time between each agent. The lack of fair and efficient turn-taking makes sense if
we ignore the content of the conversation and focus solely on who is talking when.
The conversation has a total of 6.83 seconds when no one is speaking, while a single
person is speaking for a total of 33.87 seconds and at least two people are speaking at
once for a total of 19.3 seconds. The mean efficiency at a resolution of 5 seconds is
0.57. However, the dominant contribution to the low turn-taking values is fairness: the
mean fairness at a resolution of 5 seconds is only 0.045. We consider the possibility of
alternative turn-taking metrics that use alternative fairness metrics in Section 3.8.

The results of our turn-taking metric allow us to quantify social effects. The low aver-
age value of the fairness metric reflects the disparity between agents’ time speaking.
Our metric assumes that all the agents are identical (see Section 3.2). The four partici-
pants in the study are socially equal: their 2008 American culture has no significant
gender biases in this context, they are similar ages (19, 19, 20 and 22) and they all
received the same instructions from the researchers. The differences in the agents
stem from other factors, such as personality or interest in the topics of conversation.
Our turn-taking metric highlights differences like these and can motivate further
examination. Agent M2 speaks significantly less than the other agents, as shown in
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Figure 3.11: Turn-taking at a resolution of 5 seconds (500 time steps of 10 ms)
plotted against time for a 60-second conversation between four young adults. The
expected turn-taking at a resolution of 500 for groups of four random agents,
E
[
TT(4, 500)best

]
, has a value of 0.36 and is plotted as a horizontal dashed line.
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Figure 3.12: Turn-taking at a resolution of 5 seconds (500 time steps of 10 ms)
plotted against time, for a human conversation considering only agents F1 and
M4. The expected turn-taking at a resolution of 500 for pairs of random agents,
E
[
TT(2, 500)best

]
, has a value of 0.47 and is plotted as a horizontal dashed line.

Fig. 3.10. The only two short periods where ττ(t, 500) > E
[
TT(4, 500)best

]
in Fig. 3.11

coincide with the times that agent M2 speaks without another agent speaking over
him (see Fig. 3.10).

Agents F1 and M4 dominate the first half of the conversation and agents F1 and
F3 dominate the second half of the conversation. If we consider the conversation
to be between agents F1 and M4 only, then there is considerably more turn-taking
at a resolution of 5 seconds at most times, as shown in Fig. 3.12. The quantity of
turn-taking for agents F1 and M4 is still generally below E

[
TT(2, 500)best

]
; this is

unsurprising since there are many times when agents F1 and M4 stop speaking to
listen to agents M2 and F3.
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3.7 Open source software implementation

In order to stimulate research in emergent turn-taking, we have released ‘Turn-
Taking Measurement Tools,’ an open source Python (Lutz, 2006) software library
that implements ττ. To increase the library’s adoption in academia and industry, the
library is licensed under the permissive new BSD license (Open Source Initiative, 1999).
Turn-Taking Measurement Tools includes metric functions and tools for estimating the
turn-taking present in groups of random agents as well as automated self tests and
thorough documentation. To help researchers and developers, the software package
also includes interactive examples, one of which is a simplified copy of the analysis
that we complete in Section 3.6. Turn-Taking Measurement Tools is available online at:
http://code.google.com/p/turn-taking-measurement-tools/

3.8 Discussion

Observe that ττ(t, r) is not the only possible turn-taking metric and that one could
make decisions other than those we have made for ττ(t, r). In the following, we
consider the limitations in applicability of ττ(t, r) and alternative decisions that
would lead to other turn-taking metrics.

We assume that all agents are identical and unchanging with time. However, this
will not always be the case. It is possible that agents may need the shared resource
for different amounts of time, for example if one agent asks another a series of long
questions with short answers. We could scale each agent’s allocation in Eq. (3.1) to
account for differences in agents’ needs. Our choice of fairness metric only depends
on the agent with the smallest allocation, but sometimes it is only important that
some of the agents are participating in turn-taking. For example, if three people are
in a room and two are conversing while the other is silent, how much turn-taking is
present? Our metric resolves this question by focusing on the person who is silent:
they take no turns, so the group has a turn-taking value of zero. For situations where
we desire a different answer to that question, a different fairness metric would be
appropriate.

Our resource allocation model is simplistic; others are definitely possible. The essential
properties of a turn-taking resource allocation model are that leaving the resource
unused results in low allocation and allocating to more than one agent at a time gives
a lower allocation than allocating to a single agent at a time. In general, the cost and
possibility of collisions will vary from situation to situation and the turn-taking metric
may need to be modified. For example, the cost of a collision could be a function of
the number of agents colliding at that time step, so that a collision between 100 out of

http://code.google.com/p/turn-taking-measurement-tools/
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100 agents is worse than a collision between 2 of 100 agents. We could replace Eq. (3.1)
on p. 35 and instead compute agent n’s turn-taking allocation as:

αn(t, r) =
1
r

t+r−1

∑
t′=t

An(t′)
(

1− ∑m∈N ,m 6=n Am (t′)
|N | − 1

)c

(3.13)

where the value of c controls the cost of collisions. Alternatively, collisions could
be resolved by randomly assigning the shared resource to one of the agents that
tried to use the shared resource or by deterministically assigning the shared resource
according to some predefined priority scheme.

We assume binary usage attempts, but many situations involve continuous usage
attempts. Alternative turn-taking metrics could represent agents trying to use only
part of the shared resource, with An(t) taking any real value between 0 and 1, rather
than An(t) equally either 0 or 1. Another possibility is to approximate a continuous
resource with a binary usage attempt sequence, as in Section 3.4.1 where we use a
threshold. We could have indexed αn(t, r), f airness(t, r), efficiency(t, r) and ττ(t, r) as
depending on An(t′) values for t− r + 1 ≤ t′ ≤ t. However, our choice of indexing
from t to t + r− 1 allows an allocation value to be calculated at t = 0 for finite usage
attempt sequences starting at t = 0 without having to assume values of An(t′) for
t < 0.

In general, turn-taking metrics must compute resource allocations given usage at-
tempts, reflect the concepts of fairness and efficiency, and deal appropriately with
issues of resolution. Our decisions leading to ττ(t, r) serve our goal of creating a
simple metric for turn-taking but limit the scope of our metric’s applicability. This
limitation is intentional: while our methodology for measuring turn-taking is more
general, we opt to open the discussion on measuring turn-taking with a specific,
simple metric for groups of identical agents. We leave the possible extensions to
ττ(t, r) and alternative metrics to future work.

3.9 Related work

The properties of our turn-taking metric are inspired by work in a number of existing
fields, including emergent communication. Previously, authors measured emergent
turn-taking intuitively, or with ad hoc methods such as qualitative examination of
a graph or by finding negative correlation between two signals with similar power
spectra (Di Paolo, 2000). Our turn-taking metric is quantitative and is only sensitive
to turn-taking, unlike a correlation.
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As described in Section 3.5, Iizuka and Ikegami (2004) simulated pairs of agents that
moved in a uniform, flat space and took turns chasing each other. We compare ττ(t, r)
with Iizuka and Ikegami’s own turn-taking metric, Fturn:

ττ(1, r) =
2
r

min

{
r

∑
t=1

A1(t)
[
1− A2(t)

]
,

r

∑
t=1

A2(t)
[
1− A1(t)

]}
(3.14)

Fturn = α1α2 (3.15)

where α1 = ∑r
t=1 A1(t) and α2 = ∑r

t=1 A2(t), and A1(t) = 1 if and only if the position
of agent n is in a circular sector behind the other agent and A1(t) = 0 otherwise
(Iizuka and Ikegami, 2004, Eqs. 8 and 9). (Iizuka and Ikegami use different notation,
with ga(t) and gb(t) in place of A1(t) and A2(t) and with T in place of r.) One key
difference between the two metrics is that Fturn uses a resource allocation model that
does not allow for the possibility of both agents attempting to use the shared resource
at the same time (Iizuka and Ikegami, 2004, p. 3). If A1(t) = 1 ⇐⇒ A2(t) = 0
and A2(t) = 1 ⇐⇒ A1(t) = 0 then ττ(1, r) = 2

r min{α1, α2}. Another fundamental
difference is that large ττ(t, r) values require fairness through the min{α1, α2} term
for all values of α1 and α2. Fturn does not require fairness in the same way. The
maximum of Fturn is when α1 = α2 = r/2, which is a fair allocation between the
two agents. However, at other points in its range, Fturn increases with both α1 and
α2; dFturn/dα1 = α2 ≥ 0 and dFturn/dα2 = α1 ≥ 0. This means that highly unfair
allocations can produce large Fturn values. The gradient of Fturn could be a strength
in the context of Iizuka and Ikegami (2004) if it helps the genetic algorithm find the
maximum but we consider that requiring fairness is essential for a turn-taking metric.
Iizuka and Ikegami do not specify a way to generalise their metric to more than two
agents.

Neill (2003) describes the ‘turn-taking dilemma,’ a variant on the prisoners’ dilemma
(Flood, 1958) where the optimal strategy is for the players to alternate between
defecting and cooperating. This situation appears in the natural behaviour of groups
of dwarf mongoose (Rasa, 1989). Neill uses a concept of ‘evolutionary dominance’
(Neill, 2001) to rank strategies with memories of length 1 and 2 in the presence of
noise. Neill evaluates strategies that may or may not take turns rather than evaluating
histories of actions as we have done in this paper. Because a turn-taking dilemma
rewards turn-taking most highly, the best strategies are good at coordinating turn-
taking with other good strategies. ‘Since mutual cooperation and mutual defection
result in suboptimal payoffs, a failure to coordinate one player’s cooperation with the
other player’s defection results in harm to both players’ (Neill, 2003, p. 243). Neill’s
concept of ‘self-alternating’ strategies relates to our intuition that turn-taking should
be fair. However, the best of Neill’s strategies exploit more naïve strategies, resulting
in worse turn-taking. ‘Since each player is expected to defect half the time, exploitation



3.9 RELATED WORK 56

occurs when one player takes more than his fair share of turns, harming the other
player’ (Neill, 2003, p. 243). Action records with high payoffs in a turn-taking dilemma
game will also have a large value of ττ(t, r).

Lan et al. (2009) derive a family of fairness functions based on a set of axioms. Some
of Lan et al.’s metrics also incorporate a notion of efficiency. The definition of fairness
in Eq. (3.2) is related to a Lan et al. fairness measure, fβ, where β is a parameter that
controls certain properties of the metric. We can write Eq. (3.2) as:

f airness(t, r) =
N

− fβ

(
αn(t, r), 1 ≤ n ≤ N

) (3.16)

where β → ∞ so that fβ(x) = −maxi{(∑i xi)/xi}. Lan et al. consider unbounded
fairness functions so the transformation of Eq. (3.16) is necessary to limit the range of
the fairness measure to [0, 1]. Using Lan et al.’s Eq. 5 for the weights would mean that
the axiom of irrelevance of partition does not apply to our fairness measure. However,
our fairness metric satisfies the continuity, homogeneity, asymptotic saturation, and
monotonicity axioms. While our fairness metric bears some similarity to one of Lan
et al.’s metrics, Lan et al. make no attempt to measure turn-taking specifically or to
consider the fair allocation of a resource through time.

We have considered the fair and efficient allocation of a limited shared resource
through time in the context of emergent communication. Many researchers have
explored efficient, fair resource allocation in general. Brams (2008) examines a number
of fair division problems from a political science perspective. Bouveret and Lang
(2008) investigate the computational complexity of finding efficient allocations of
indivisible resources that satisfy an ‘envy-free’ notion of fairness. However, neither
Brams nor Bouveret and Lang considers the distribution of allocations through time
as we have with our turn-taking measure.

Researchers have also devised ways of measuring the quality of turn-taking in human-
human or human-machine speech. Turn-taking is present in conversation when
speaker changes occur and the participants follow turn trading rules (Sacks et al., 1974).
Measuring turn-taking is important in spoken dialog systems, such as automated
telephone answering agents, because it contributes to user satisfaction. In spoken
dialog systems, turn-taking quality depends on the lengths of silences between speech
and the interruption rates (Raux and Eskenazi, 2008; Turunen et al., 2006). Measuring
silences and interruptions is related to our efficiency metric, which forms part of our
turn-taking metric. Efficient interaction is also important in human-robot interactions.
Chao and Thomaz (2010) examine turn-taking between an anthropomorphic robot
and a person as the person teaches the robot to sort coloured objects; Chao and
Thomaz observe that good turn-taking has ‘minimal over-lapping of turns as well as
minimal time spent between turns, characteristics of an efficient interaction’ (Chao and
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Thomaz, 2010, p. 133). The key difference between human-human or human-machine
turn-taking measures and our work is that we do not assume the presence of any
kind of turn-taking a priori. Counting silences and interruptions is a good measure
of deviations from normal human-generated turn-taking but it fails to distinguish
monologues from conversations because fairness is not considered. Our metric
classifies a wider range of possible agent interactions, making it better suited for use
in emergent communication.

3.10 Conclusion

We propose ττ(t, r), a quantitative metric for the degree of turn-taking present in
resource usage attempt sequences by identical agents. This metric allows evaluation
of turn-taking in emergent-communication experiments. We define ττ(t, r) as the
product of the allocation efficiency and fairness to reflect our intuitive understanding
of turn-taking. The concept of resolution is essential to measuring turn-taking: turn-
taking may be present on some time scales but not others. We suggest that intentional
turn-taking behaviour should have a value of ττ(t, r) that exceeds the maximum
expected turn-taking that would be produced by random agents. We give mean values
and standard deviations for the distributions of ττ(t, r) produced by random agents
and methods for comparing observed values and distributions of ττ(t, r) with those
distributions from random agents. We show that our metric is useful in practice by
applying it to simulations by Di Paolo (2000) and Iizuka and Ikegami (2004), and to a
recorded human conversation taken from the COSINE corpus (Stupakov et al., 2009).
Our new metric enables us to make quantitative measurements about the presence of
turn-taking rather than informal qualitative judgements.

The results of this chapter support the thesis by reifying the concept of measurable
multi-agent sequential behaviours. We suggest that our methodology in this chapter
could be applied to construct metrics for desirable sequential multi-agent behaviours
in general. Specifically, multi-agent sequential behaviour metrics should consider
the effects of different resolutions and different numbers of agents as well as the
performance of random agents and the relationship between metric results and
qualitative human judgements. We provide in ττ a concrete example of how to
measure a potentially desirable sequential multi-agent behaviour. In Chapter 4, we
apply ττ to a simulated multi-agent context and demonstrate how to identify reward
functions that result in turn-taking as a system behaviour. Therefore, this chapter also
supports the thesis by building the requisite foundation for Chapter 4.
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Chapter 4

Rewards for Pairs of Q-Learning
Agents Conducive to Turn-Taking
in Medium Access Games

In Chapter 3, we demonstrated a simple metric for turn-taking. In this chapter, we
use that metric to explore a range of possible reward functions for pairs of Q-learning
agents (Watkins, 1989) in a class of stateful games, which we call ‘medium access
games.’ We show that some of these reward functions are conducive to turn-taking
as a system behaviour, while others are prohibitive to turn-taking. This chapter
supports the thesis by showing that appropriate reward functions can influence the
sequential joint behaviour of pairs of Q-learning agents toward the desired behaviour,
turn-taking, which can be measured by the metric ττ.

Medium access games are a simplified model of the interactive aspect of human and
machine communication. Our goal is to develop predictors that allow us to anticipate
the presence of turn-taking behaviour by the Q-learning agents in simulated medium
access games by analysing the agents’ reward functions. We use the Nash equilibria
of a medium access game as played by pairs of agents with stationary policies as
the predictor for turn-taking in Q-learning agents. We present simulation results
for an extensive range of reward functions for pairs of Q-learners and we use our
Nash equilibria techniques to develop predictors for the presence and absence of
turn-taking.

While our focus is on designing multi-agent reinforcement learning systems that
produce intentional turn-taking, our results may also be useful for analysing emer-
gent turn-taking behaviour. Therefore, our research expands the space of designed
behaviours by encroaching on the domain of emergent turn-taking. We propose ways
to apply our methodology to design reward functions for quantifiable sequential joint
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behaviours besides turn-taking. In Chapter 5, we develop this chapter’s methodology
further, into a general method for designing rewards for stochastic games.

4.1 Introduction

How can we design incentive systems to induce coordinated turn-taking behaviour
between adaptive agents in multi-agent systems? Learning agents in multi-agent
systems face the challenges of interaction with the other agents as well as the intrinsic
challenges of learning. Frequently, the designers of a multi-agent system desire a
particular overall emergent system behaviour without knowing the exact dynamics of
the agents’ interaction. For example, a team of robots playing soccer (Kitano et al.,
1997) tries to win the game, but the team members’ interactions are highly dependent
on the opposing team’s strategy and the erratic movements of the ball. Multi-agent
reinforcement learning (Buşoniu et al., 2008) offers a promising methodology for
controlling multi-agent systems, but leaves designers with the problem of choosing
agents’ rewards so as to induce coordinated behaviour. We cannot assume coordination
amongst cooperative, decentralised agents, especially when the agents must learn
communication. Emergent coordination is also a desirable outcome in a number of
purely competitive multi-agent situations, such as the Prisoners’ Dilemma (Flood,
1958) and the Tragedy of the Commons (Hardin, 1968). We focus on inducing agents
to exhibit a particular type of coordination: turn-taking.

We present a class of multi-agent medium access games as a framework for exploring
the emergence of turn-taking in simulated Q-learning agents (Watkins, 1989). Our
medium access game model is inspired by research on medium access control in wired
and wireless computer networks (Tanenbaum, 2002). We simulate Q-learning agents
with a wide range of reward functions playing medium access games. Some methods
of rewarding the agents result in turn-taking as a system behaviour. We measure the
degree of turn-taking using the metric that we develop and demonstrate in Chapter 3
(see also Raffensperger et al., 2012b).

Our goal is to provide researchers in emergent communication with ways to predict the
emergence of turn-taking in multi-agent simulations. Rather than studying emergent
behaviour directly, we focus on the ‘design’ agenda of multi-agent reinforcement
learning proposed by Gordon (2007) and suggest a way to produce coordinated turn-
taking in a group of agents. Therefore, the examples of turn-taking presented here
are designed in the sense that we are explicitly looking for turn-taking behaviour.
However, global turn-taking behaviour occurs through the synergy of agents acting
with only local information, so our results are useful for analysing emergent turn-
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taking. Our contributions to the multi-agent reinforcement learning approach to
turn-taking are:

• We formally define a class of multi-agent games that are representative of
medium access control problems in shared communication mediums. (See
Section 4.2.)

• We identify the deterministic policies for agents in medium access games that
produce turn-taking as a system behaviour. We use Markov chains to derive the
expected payoff for stationary stochastic policy agents, which enables computa-
tion of the Nash equilibria of medium access games. (See Section 4.3.)

• We present simulation results for the emergence of turn-taking in pairs of Q-
learning agents with a range of reward functions and we analyse these results
using the Nash equilibria of the corresponding medium access games. We
discuss how to analyse a reward function to predict the emergence of turn-
taking in Q-learning agents and how to design reward functions that are either
conducive or prohibitive to the emergence of turn-taking. (See Section 4.4.)

• We discuss possible extensions to our model in Section 4.5 and we give sug-
gestions on how to apply our methodology to design rewards for coordinated
multi-agent behaviours other than turn-taking.

We summarise the relevant literature in Section 4.6 and we draw conclusions in
Section 4.7.

4.2 Simulated medium access games

We consider pairs of agents that share an interfering communication medium, as in
Fig. 4.1. The agents have some need to transmit messages on the channel, but the
interfering nature of the channel prohibits agents from successfully transmitting all at
once. The agents are rewarded based on the outcome, so we describe this situation
as a medium access game. The agents’ interests in a medium access game may be
conflicted or the agents may be incentivised to cooperate.

In our model, each agent can transmit a message on the channel at each discrete
time step, t = 1, 2, 3, . . .. The communications channel is interfering such that an
agent’s message will be corrupted if another agent also transmits on the same time
step. However, we assume that the agents cannot tell whether or not a message has
been corrupted by a ‘collision’ with another message. This interfering communication
channel design is a model of a variety of situations where turn-taking may be useful.
For example, in half-duplex telephone conversations, a person cannot hear the another
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Interfering
channel

Agent 1

Policy

Local reward

Agent 2

Policy

Local reward

Figure 4.1: Two learning agents connected through an interfering communication
channel.

speaker while he or she is speaking because of the limitations of the channel and the
first speaker will not immediately know if the other person tried to speak.

The agents must coordinate their transmissions to defeat the channel’s interference,
if they are to successfully communicate. One way to coordinate is to use previously
known medium access control protocols such as ALOHA or Ethernet (Tanenbaum,
2002). However, the collide-and-back-off approach of many medium access control
protocols makes for inefficient use of the channel in high traffic situations; protocols
that have a high turn-taking metric value also fairly maximise channel use among
the agents, by the definition of the turn-taking metric (Raffensperger et al., 2012b).
Perhaps the agents could use their successful messages on the channel to transmit
information about when they needed to use the channel. However, in some cases,
channel control must be independent of message content. For example, if the agents
do not share a common language but have to learn to translate the messages they
receive, as in an experiment by Goldman et al. (2007), then agents must simultaneously
learn to play a medium access game. We consider that each agent must deduce its
own control scheme based on its payoffs. The agents only have local knowledge and
we compute an agent’s reward solely with this local information. By using only local
information, our model can be more easily applied to distributed systems. Not all
methods of generating local rewards will result in good global behaviour; we identify
which methods produce global turn-taking behaviour.

4.2.1 Discrete interference channel model

In the most general circumstances, agents must simultaneously learn channel coordi-
nation, language and other aspects of their joint task. However, in order to maintain
our focus on learning channel coordination, and to avoid state space explosion, we
use a simple interference channel and we ignore language learning and other possible
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aspects of the agents’ actions. We model the communications channel as a discrete-
time, memoryless broadcast interference channel. We consider a set of identical
agents, denoted by N . Each agent n ∈ N has a single output On(t), a binary-valued
abstraction of its transmissions on the channel:

On(t) =

{
0 if agent n is not transmitting on the channel at time t
1 if agent n is transmitting on the channel at time t

(4.1)

We consider that each agent also has a single input, In(t), to sense activity on the
channel:

In(t) =

{
0 if Om(t) = 0 for all m ∈ N
1 otherwise

(4.2)

If any agent transmits on the shared broadcast channel, then In(t) = 1. So if agent
n transmits at time t, then that agent does not know whether another agent also
transmitted at that time. We focus on two-agent systems where N = {1, 2}.

4.2.2 Agent design

Our system consists of a single channel and a pair of agents. Each agent must act
on its local information to maximise its expected payoff. Agent n’s local information
comprises all past outputs and inputs, In(t − t′), On(t − t′) for 1 ≤ t′ ≤ t. An
agent’s current knowledge is summarised by its ‘state.’ The agents must have some
information about their environment if they are to be reactive, so at least one input
value must be included in the agents’ states. Since we intend that the state is sufficient
for the agents to learn turn-taking, which involves action coordination through time,
we include at least one past output value. In order to make our simulations as simple
as possible, we only include information from the last time step in the agents’ states.
Therefore, we consider that the agents’ states include their last output and input:

Sn(t) =
〈

In(t− 1), On(t− 1)
〉

(4.3)

This kind of state has 3 possible values because On(t) = 1 =⇒ In(t) = 1 by Eq. (4.2).
We discuss alternative state representations in Section 4.5.

When two Q-learning agents use the definition of state from Eq. (4.3), the next state
depends on the channel properties described in Section 4.2.1, the values of both agents’
states and Q-tables, and the agents’ exploration policies. The definition of state in
Eq. (4.3) does not have the Markov property because it does not include enough
information to predict the probability distribution for the next state (Sutton and Barto,
1998, §3.5). An agent using the definition of state in Eq. (4.3) cannot always predict the
probability distribution for its next state because the other agent’s actions depend on
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Table 4.1: One definition for agent n’s reward, Rn(t), that depends on that agent’s
last two outputs and its last input. Each value in the rightmost column is also
given a symbolic name.

On(t− 1) On(t) In(t) Reward value, Rn(t), and symbolic name
0 0 0 runused = 0
0 0 1 rlostturn = 1
0 1 1 rtransmit = 1
1 0 0 rrest = 0
1 0 1 rreceive = 1
1 1 1 rinterruptedother = 0

what it learned on time steps t− 2, t− 3, . . . , and none of this information is included
in Eq. (4.3). However, despite its minimal, non-Markovian nature, our definition of an
agent’s state is sufficient to demonstrate a basic form of turn-taking in pairs of agents.

On each time step, an agent can take one of two actions: either the agent chooses
to transmit a message on the channel, On(t) = 1, or not, On(t) = 0. The agent
maintains a policy which, in general, is a time-varying mapping between states and
the probability that the agent will choose to transmit a message on the channel:

πn(t) : Sn → [0, 1] (4.4)

where πn(t) is agent n’s policy at time step t, and Sn is the set of all possible states
for agent n. In Section 4.4.1, we describe how Q-learning agents update their policies
to maximise their expected rewards.

We calculate each agent’s rewards with local information. We do not assume that
the agents have prior knowledge of the structure or values of the reward function or
the dynamics of the interfering channel. As with state definitions, reward functions
can be defined in a multitude of ways. The reward value should be based on the
agent’s current action and the consequence of that action, so it should at least include
the agent’s current output and input. To allow for the possibility of turn-taking, we
must distinguish constantly repeated actions from alternating actions; this can be
achieved by including at least one past output. Therefore, we choose a simple reward
function definition based on an agent’s last output, current output and current input.
Table 4.1 shows an example reward function of this form. We restrict our study to
reward functions of this form but we vary the values in each row of the last column
of Table 4.1. We consider other possible reward function definitions in Section 4.5.

We use the turn-taking metric that we develop in Chapter 3, ττ(t, r), to measure
the quantity of turn-taking present in the results of a particular simulation (see also
Raffensperger et al., 2012b). Our turn-taking metric assumes that agents are sharing a
limited resource; here the interfering communications channel is the shared resource.
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An agent takes a turn using the shared resource if its output is 1 while all other agents
have outputs of 0. We compute the global quantity of turn-taking from each agent’s
allocation, as in Eq. (3.1) in Chapter 3 on p. 35. In this case, agent n’ allocation is
computed as:

αn(t, r) =
1
r

t+r−1

∑
t′=t

On(t′)
[
1−Om(t′)

]
(4.5)

where n, m ∈ {〈1, 2〉, 〈2, 1〉}, t is the time-step that the turn-taking calculation refers to
and r is the resolution of the turn-taking (Raffensperger et al., 2012b, §2.3). For more
details on ττ, see Chapter 3 and the published paper (Raffensperger et al., 2012b).

4.3 Insights gained from stationary agents

While our primary goal is to understand the emergence of turn-taking in medium
access games played by Q-learning agents, we gain insight by examining non-learning
agents with stationary policies. Analysing agents with stationary deterministic policies
enables us to understand which policies a Q-learning agent can learn that will produce
turn-taking; analysing agents with stationary stochastic policies enables us to predict
the average payoff that a Q-learning agent will gain by playing a particular policy
against the other agent. Once we know the average payoffs of the agents for each
pair of policies, we can compute the Nash equilibria of that medium access game,
which we use to predict the behaviour of pairs of Q-learning agents in medium access
games.

4.3.1 Turn-taking behaviour in agents with deterministic policies

We can compactly represent deterministic policies as three bits, representing the
agent’s output On(t) given the three possible values of the agent’s state Sn(t), that is,
in the form 〈πn|〈0,0〉, πn|〈1,0〉, πn|〈1,1〉〉. Table 4.2 shows an example of a deterministic
policy, 〈1, 0, 0〉. In game theory terms, the agent employs a ‘pure strategy’ for each
possible state: the agent will always take the same action for any particular state.
There are 23 = 8 different deterministic policies with a state as defined in Eq. (4.3),
so there are 8× 8 = 64 different pairs of policies. Because the agents’ policies are
deterministic, the initial states of both agents, S1(0) and S2(0), are important. We
consider the performance of a pair of policies for all possible different initial states of
the agents. We can describe an initial condition with both agents’ outputs, O1(−1)
and O2(−1); there are therefore 22 = 4 different initial conditions.

We exhaustively searched the space of pairs of deterministic policies and initial
conditions and found all combinations of policies and initial conditions that produce
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Table 4.2: An example of a deterministic policy. In the form 〈π1|〈0,0〉, π1|〈1,0〉,
π1|〈1,1〉〉, this is policy 〈1, 0, 0〉.

State components State The policy determines the next action
I1(t− 1) O1(t− 1) S1(t) p(O1(t) = 1) = π1|S1(t)

0 0 〈0, 0〉 1
1 0 〈1, 0〉 0
1 1 〈1, 1〉 0

Table 4.3: The deterministic policies and initial conditions that produce turn-
taking. We show the agents’ policies in the form 〈πn|〈0,0〉, πn|〈1,0〉, πn|〈1,1〉〉.

Agent 1 policy, π1 Agent 2 policy, π2 Initial conditions
〈0, 1, 0〉 〈0, 1, 0〉 Asymmetric
〈1, 1, 0〉 〈0, 1, 0〉 Any
〈0, 1, 0〉 〈1, 1, 0〉 Any
〈1, 1, 0〉 〈1, 1, 0〉 Asymmetric

turn-taking behaviour. We classify pairs of policies using the turn-taking metric,
ττ(t, r) as described in Chapter 3. Some pairs of policies produce turn-taking with
ττ(t, 2) = 1 for t > 0 for some initial conditions. We consider those policy pairs to
‘produce turn-taking behaviour.’ Most strategies do not display turn-taking behaviour
for any initial conditions. Those pairs of policies that do produce turn-taking must
have either non-identical policies in the pair or the sequence of the agents’ states must
commence with an asymmetric initial condition.

Table 4.3 lists all pairs of deterministic policies that produce turn-taking. The initial
conditions required for agents with policies from Table 4.3 to take turns depend on
the values of the first of the three bits in the agents’ deterministic policies, π1|〈0,0〉 and
π2|〈0,0〉. If the two agents have different policies, π1|〈0,0〉 6= π2|〈0,0〉, then any initial
condition produces turn-taking. However, if π1|〈0,0〉 = π2|〈0,0〉, then turn-taking will
only be present if the initial condition is asymmetric: either O1(−1) = 0, O2(−1) = 1
or O1(−1) = 1, O2(−1) = 0. This matches our expectation: if the agents always
respond the same way to the same situation, and they start in the same situation, then
they will always do the same thing at the same time and will never alternate.

We should consider the deterministic systems described in Table 4.3 to be examples
of turn-taking as a designed behaviour rather than a learned or emergent behaviour.
However, the results for deterministic systems are important for understanding
systems with Q-learning agents.
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4.3.2 Computing the expected rewards for agents with stationary stochas-
tic policies

As we show in Section 4.4.2, we can use the Nash equilibria of medium access games
as played by agents with stationary policies to predict turn-taking in Q-learning agents.
In order to compute the Nash equilibria, we must first derive the expected rewards
for stationary stochastic policies. We use Markov chain theory (Häggström, 2002) to
derive the expected rewards for each agent as a function of their policy.

Suppose each agent follows a stationary stochastic policy, πn : Sn → [0, 1], where Sn

is the set of possible states. Given a reward function definition of the form given in
Table 4.1, we can construct a Markov chain that fully describes the dynamics of the
system. The global system state is fully described by the agents’ states and the state
of their reward function, see Table 4.1. We compute the global system state, Sg(t), as:

Sg(t) =
〈
O1(t), O2(t)

〉
(4.6)

There are 4 different global states. For agents with stationary stochastic policies, this
global system state has the Markov property.

In order to compute the agents’ expected rewards for a particular pair of policies, we
have to compute the probabilities that each agent will receive each different reward
value, runused, rreceive, etc. These probabilities come from the global state transition
probabilities and the steady state distribution of global states. The previous global
state and the agents’ policies determine the probability that the system will take a
particular value for the next global state, S∗:

p
[
Sg(t + 1) = S∗

]
= p

[
π1|Sg(t) = O∗1

]
p
[
π2|Sg(t) = O∗2

]
(4.7)

where πn|Sg(t) is agent n’s policy evaluated at agent n’s state, given that the global
state is Sg(t), and O∗n is agent n’s output for state S∗. If we name the possible values
for the global state with integers, thus Sg(t) ∈ {1, 2, 3, 4}, then we can construct a
transition probability matrix, P, such that [P]ij = p

[
Sg(t + 1) = j

∣∣Sg(t) = i
]
. We

compute the steady-state distribution of states directly:

S̄ = lim
t→∞

Pt (4.8)

If this limit exists, then each row of S̄ is equal to the steady state probability distribu-
tion of states (Puterman, 1994, p. 593). The limit will exist when the Markov chain
is irreducible and aperiodic, which is always the case in this chapter. In practice, we
approximate this limit by evaluating Pt with a large value of t, such as t = 1000.
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Table 4.4: An example medium access game in normal form. We show the greedy
policies for the agents in the form 〈πn|〈0,0〉, πn|〈1,0〉, πn|〈1,1〉〉. The agents actually
play the exploration policy that is a stochastic perturbation of the greedy policy.
The entries of the table are of the form average payoff for row agent, average
payoff for the column agent. We highlighted the pairs of policies that produce
turn-taking in gray.

πn 〈0, 0, 0〉 〈0, 0, 1〉 〈0, 1, 0〉 〈0, 1, 1〉 〈1, 0, 0〉 〈1, 0, 1〉 〈1, 1, 0〉 〈1, 1, 1〉
〈0, 0, 0〉 0.18, 0.18 0.54, 0.10 0.24, 0.23 0.67, 0.10 0.52, 0.48 0.89, 0.10 0.54, 0.50 0.90, 0.10
〈0, 0, 1〉 0.10, 0.54 0.30, 0.30 0.12, 0.54 0.37, 0.14 0.29, 0.71 0.49, 0.25 0.30, 0.70 0.50, 0.14
〈0, 1, 0〉 0.23, 0.24 0.54, 0.12 0.52, 0.52 0.75, 0.13 0.62, 0.62 0.86, 0.14 0.81, 0.80 0.90, 0.14
〈0, 1, 1〉 0.10, 0.67 0.14, 0.37 0.13, 0.75 0.18, 0.18 0.16, 0.89 0.18, 0.38 0.17, 0.90 0.19, 0.18
〈1, 0, 0〉 0.48, 0.52 0.71, 0.29 0.62, 0.62 0.89, 0.16 0.50, 0.50 0.89, 0.11 0.54, 0.53 0.90, 0.11
〈1, 0, 1〉 0.10, 0.89 0.25, 0.49 0.14, 0.86 0.38, 0.18 0.11, 0.89 0.32, 0.32 0.14, 0.86 0.39, 0.15
〈1, 1, 0〉 0.50, 0.54 0.70, 0.30 0.80, 0.81 0.90, 0.17 0.53, 0.54 0.86, 0.14 0.70, 0.70 0.90, 0.14
〈1, 1, 1〉 0.10, 0.90 0.14, 0.50 0.14, 0.90 0.18, 0.19 0.11, 0.90 0.15, 0.39 0.14, 0.90 0.18, 0.18

Let Rn be the reward matrix for agent n, such that [Rn]ij is the reward to agent n
when the global state transitions from i to j. We can now compute agent n’s expected
reward as the sum of all the entries in the element-wise product of Rn, S̄T and P:

E
[
rn(t)

]∣∣∣
π1∪π2

=
4

∑
i=1

4

∑
j=1

[Rn]ij
[
S̄T
]

ij
[P]ij (4.9)

Thus we can compute the agents’ expected rewards given any possible stationary
stochastic policy.

4.3.3 Computing the Nash equilibria of medium access games

Here we show how to use stationary agents’ expected rewards to compute the Nash
equilibria (Nash, 1950) of medium access games by expressing the game in ‘normal
form’ as a table of payoffs given both agents’ policies. Q-learning agents learn a
single best action given a particular state. We refer to a Q-learning agent’s current
estimate of the best action to take for each state as its ‘greedy policy.’ However, while
a Q-learning agent is learning, it must explore to discover the best rewards while also
exploiting the current known good rewards. We refer to a Q-learning agent’s policy
as an ‘exploration policy’ if the policy also includes stochastic exploratory moves.
A Q-learning agent’s exploration policy is stochastic and non-stationary. We use
Q-learning agents with ε-greedy exploration policies: they choose an action at random
with probability ε, otherwise they choose the best action (Sutton and Barto, 1998,
§2.2). Using the Markov chain method developed in Section 4.3.2, we can compute
the expected reward for a Q-learning agent with a stable exploration policy, given a
stable policy for its opponent, the reward function and the value of ε.
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Table 4.4 shows an example of a medium access game in normal form for two agents
playing ε-greedy exploration policies with ε = 0.2 that are rewarded according to
Table 4.1. The policies that produce turn-taking gain high rewards for both agents
because the reward values in Table 4.1 were deliberately hand-chosen to induce turn-
taking behaviour. Notice that Table 4.4 is symmetric; this is because the agents are
identical except that they might play different strategies.

Nash (1950) built his equilibrium concept upon the idea of countering strategies,
or ‘best responses.’ Suppose one agent has a fixed probability distribution over its
possible policies, for example, say π1 = 〈0, 0, 1〉 with probability 1. Then agent 2’s
best response is the probability distribution over its possible policies that maximises
its expected payoffs. In this case, π2 = 〈1, 0, 0〉 with probability 1 is agent 2’s best
response, giving agent 2 an expected payoff of 0.71. More formally: let Π1 and Π2

be policy probability column vectors for agent 1 and agent 2. Let V1 be the expected
reward for agent 1 such that [V1]ij = E

[
R1(t)

]∣∣
π1∪π2

, where π1 is the ith policy in Π1

and π2 is the jth policy in Π2. We say that Π1 is a best response to Π2 if and only
if Π1 maximises ΠT

1 V1Π2 (von Stengel, 2007, p. 55). A Nash equilibrium is a pair
of policy probability distributions that are best responses to each other (von Stengel,
2007, p. 56).

The ‘support’ of a policy probability distribution is the set of policies that the agent
plays with non-zero probability. We say that a Nash equilibrium is ‘mixed’ if the
support of either agent’s policy distribution includes more than one policy; a ‘pure’
Nash equilibrium is one where each agent plays a single policy with probability 1.
Unfortunately, the definition of a Nash equilibrium does not readily admit a method
for finding the Nash equilibria of a game. We used a support enumeration algorithm
described by von Stengel (2007) to compute all the Nash equilibria in our medium
access games (von Stengel, 2007, p. 56). The game in Table 4.4 has three Nash
equilibria, all of which produce turn-taking as a system behaviour. Two of those Nash
equilibria are pure:

• Agent 1 plays 〈0, 1, 0〉 against 〈1, 1, 0〉 played by agent 2

• Agent 1 plays 〈1, 1, 0〉 against 〈0, 1, 0〉 played by agent 2

The third Nash equilibrium is mixed:

• Both agents play 〈0, 1, 0〉 with probability 0.28 and 〈1, 1, 0〉 with probability 0.72.

At each of these Nash equilibria, neither agent can increase its expected payoff by
changing its probability distribution over policies. For the pure Nash equilibria of the
game in Table 4.4, we can that see the row agent cannot increase its expected payoff by
changing its policy (that is, changing the row) and also that the column agent cannot
increase its expected payoff by changing its policy (that is, changing the column).
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For the mixed Nash equilibrium, this informal verification of the Nash equilibria in
Table 4.4 does not work because we must precisely consider probability distributions
over rows and columns.

Every game is guaranteed to have at least one mixed Nash equilibrium (Nash, 1950),
but pairs of Q-learning agents cannot converge to every possible mixed Nash equilib-
rium. Some medium access games only have mixed Nash equilibria which therefore
cannot be played by pairs of Q-learning agents with ε-greedy exploration policies.
Despite this limitation, we can use the Nash equilibria to classify and predict the
emergence of turn-taking in pairs of Q-learning agents with reasonable accuracy.

4.4 Predictors for turn-taking in medium access games played
by Q-learning agents

Here we identify which reward functions induce turn-taking in pairs of Q-learning
agents in medium access games and we describe how to design rewards conducive
to the emergence of turn-taking based on a set of predictors that we infer from our
simulation results.

4.4.1 Q-learning algorithm set up

A Q-learning agent adapts the actions it chooses to maximise its reward (Watkins, 1989).
A Q-learner maintains a table of learned state-action values, Qn[Sn, On]. Learning is
done locally for each agent. Agent n’s Q-table is updated as:

Qn
[
Sn(t), On(t)

]
← Qn

[
Sn(t), On(t)

]
+ β
(

Rn(t)+ γ max
O

Qn
[
Sn(t + 1), O

]
−Qn

[
Sn(t), On(t)

])
(4.10)

where Sn(t) is the state, Rn(t) is the reward and On(t) is the output produced at time
t for agent n, and where β is the learning rate and γ is a factor to discount future
rewards (Sutton and Barto, 1998). A Q-learner’s policy is a stochastic mapping between
states and outputs (Sutton and Barto, 1998, §3.7). As mentioned in Section 4.3.3, we
have chosen the ‘ε-greedy’ exploration scheme (Sutton and Barto, 1998, §2.2).

We follow the simulation procedure shown in Algorithm 4.1. Table 4.5 summarises the
experimental parameters and gives their values. We hold the learning rate, exploration
amount, and discount factor constant over the course of each simulation. We give all
state-action pairs the same initial value, Q0 = 100, chosen as an optimistic learning
bias to induce the agents to explore untried states and actions. We set the number of
computation steps, tend, to 5000.
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Initialise the agents’ states arbitrarily.1

Initialise the agents’ Q-tables with Q0.2

For t = 0, 1, 2, . . . , tend do3

For each agent n ∈ {1, 2} do4

Agent n sets On(t) according to its policy, πn(t).5

Set I1(t) and I2(t) according to Eq. (4.2).6

For each agent n ∈ {1, 2} do7

Agent n observes In(t) and computes its next state, Sn(t + 1).8

Set Rn(t) according to agent n’s reward function.9

Agent n updates its policy according to Eq. (4.10).10

Algorithm 4.1: Experiment procedure pseudo code.

Table 4.5: Experimental parameter values.

Parameter name Symbol Domain Value
Learning rate β [0, 1] 0.2

Exploration amount ε [0, 1] 0.2
Discount factor γ [0, 1) 0.9

Initial Q-table value Q0 R 100
Computation time steps tend N 5000

The policies learned by the agents are highly dependent on the reward function. We
use rewards of the form in Table 4.1, controlling the values of runused, rlostturn, etc., in
order to illustrate their effects on the resulting system behaviour. In some cases, a
designer will not be able to control the reward function exactly; then our results enable
the designer to predict whether or not a system will produce turn-taking behaviour.
For simplicity, we restrict the value of each agent’s reward function to a finite, discrete
set:

Rn(t) ∈ {0, 0.25, 0.5, 0.75, 1} (4.11)

We focus on two-agent systems with perfect symmetry between the two agents
such that both agents have the same parameters and same reward function. Unlike
for deterministic agents, this symmetry between the agents poses no barrier to the
emergence of turn-taking because of the stochastic nature of the simulation.

By Eq. (4.11), the reward function can take one of five different values for each
row of the six rows in Table 4.1. Therefore, there are 56 = 15625 possible reward
functions. However, a game is invariant for positive-affine transformations of the
agents’ payoff table (von Stengel, 2007, p. 54), so some of the resulting reward
functions are theoretically identical. The agents’ payoff table is a scaled sum of the
reward values runused, rlostturn, etc., with non-negative scale factors, so any two reward
functions that differ only by an affine transformation will result in two payoff tables
that also only differ by an affine transformation. Table 4.6 shows two reward functions
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Table 4.6: Two theoretically identical reward functions. The values of Rn(t) for
Case 2 are twice the values for Case 1 plus 0.25.

Case 1
Reward symbol Rn(t)

runused 0.25
rlostturn 0
rtransmit 0.25

rrest 0
rreceive 0.25

rinterruptedother 0

Case 2
Reward symbol Rn(t)

runused 0.75
rlostturn 0.25
rtransmit 0.75

rrest 0.25
rreceive 0.75

rinterruptedother 0.25

that are theoretically identical because they differ by only a scale factor and an additive
constant. There are 10803 theoretically distinct reward functions.

For each reward function, we simulated an ensemble of 1000 independent systems.
Each system ran for 5000 time steps. Fig. 4.2 shows the emergence of turn-taking in
one system, with rewards as given in Table 4.1. This reward function gives the agents
high rewards for turn-taking behaviour; the mean reward over all 1000 independent
systems for agent 1 is 0.48 for the first 1000 time-steps, before the onset of turn-taking,
and is 0.93 for the last 1000 time-steps. Because the agents take exploratory moves,
the turn-taking is not perfect. However, the Q-learning agent’s post-learning average
turn-taking is substantially higher than 0.44 (see Fig. 4.2), the expected turn-taking at
resolution r = 100 for pairs of random agents (Raffensperger et al., 2012b, §3).
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Figure 4.2: Turn-taking at a resolution of 100 as a function of time in pairs of
simulated Q-learning agents rewarded as in Table 4.1, the mean of the ensemble
of 1000 simulations is shown in black and the 5th and 95th percentiles are shown
in gray. The turn-taking increases as the agents learn to maximise their reward.
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4.4.2 Classification methods

We classify a system as producing turn-taking behaviour if the agents learn a set of
greedy policies that would produce turn-taking with ττ(t, 2) = 1 when the exploration
and learning are turned off, given an initial condition that is favourable towards turn-
taking. We consider that the agents’ exploratory moves are incidental to the underlying
policy. We refer to this evaluation of the final learned policies of a system as the
post-simulation turn-taking classification. Because we are looking at the average of
an ensemble of stochastic simulations, we have to set a threshold for the presence or
absence of turn-taking for an ensemble: we chose to identify a reward function as one
that produces turn-taking if more than 95% of the systems with that reward function
learned a policy that would produce turn-taking.

More formally, we evaluate the proportion of simulation runs that produce a turn-
taking strategy as the final greedy policy of both agents. We define an agent’s greedy
policy as the action with the highest Q-table value for each state:

π
greedy
n = {arg max

O
Qn
[
S, O

]
for all states S} (4.12)

For simulation run i, we record the value of π
greedy
n for both agents at the end of the

simulation. If both agents’ policies correspond to the deterministic turn-taking policies
(see Section 4.3.1), then we consider that turn-taking emerged in simulation run i,
ττ

policy
i = 1, otherwise we consider that turn-taking has not emerged, ττ

policy
i = 0. We

repeat this process for each of our 1000 independent systems for each reward function,
and consider that turn-taking is a system behaviour for Q-learning agents if:

1
1000

1000

∑
i=1

ττ
policy
i > φ (4.13)

where φ is the confidence level of our post-simulation turn-taking classifier, which we
set at 0.95 unless otherwise stated. By this definition, we found that 1843 out of 10803
possible reward functions produce turn-taking as a system behaviour.

We use the Nash equilibria of the medium access game defined by a given reward
function to predict the post-simulation turn-taking. This way, we can predict the
outcome from the reward function alone without doing the simulation. In theory, we
expect turn-taking to emerge in systems whose reward function defines a medium
access game that has a Nash equilibrium where both agents have a turn-taking policy.
However, Q-learning agents are not guaranteed to converge to the optimal policy in
non-stationary environments, as is the case in our multi-agent reinforcement learning
context (Buşoniu et al., 2008, p. 10).
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All medium access games

Any policy in any N.E. corresponds to turn-taking

Turn-taking occurs in simulations

All N.E. corresponds to turn-taking

Figure 4.3: We approximate the space of turn-taking by using two predictors: the
outer bound is the set of medium access games where any policy in any of its
Nash equilibria (N.E.) corresponds to turn-taking and the inner bound is those
games where all Nash equilibria correspond to turn-taking.

Despite the limitations of the game-theoretic approach, we can still find approximate
predictors of turn-taking behaviour. For each reward function, we compute all the
Nash equilibria of the medium access game as played by stationary stochastic policies,
as in Section 4.3.2. If all the agents’ policies in those Nash equilibria have support
only for the four deterministic policies that produce turn-taking, then we predict that
Q-learning agents will always learn turn-taking policies. Given the known limitations
of Q-learning agents’ performance in general-sum stochastic games (Zinkevich et al.,
2006; Waltman and Kaymak, 2007; Buşoniu et al., 2008; Crandall and Goodrich,
2010), this method works with reasonable success: We correctly predict 1631 reward
functions as producing turn-taking and 8716 as not producing turn-taking. However,
we erroneously predict 244 functions as taking turns when they do not, and 212
functions as not taking turns when they do.

Similarly, we predict that turn-taking will only emerge if any policy in the support
of the Nash equilibria corresponds to the four deterministic policies that produce
turn-taking. This method correctly predicts 1843 reward functions as taking turns and
6858 reward functions as not taking turns, but erroneously predicts 2102 functions as
taking turns that actually do not. This way, we bound the space of medium access
games that show turn-taking in simulation with two predictors, as shown in Fig. 4.3.
Interestingly, if we predict turn-taking when the support of at least any one Nash
equilibrium corresponds to the deterministic policies that produce turn-taking, we get
a predictor with performance between the one that checks all Nash equilibria and the
one that checks any policy in any Nash equilibrium. We summarise these results in
Table 4.7.
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Table 4.7: We can use the Nash Equilibria (N.E.) to predict whether or not Q-
learners will learn turn-taking policies. This table shows the number of different
non-identical reward functions for different cases, depending on whether turn-
taking is present in the simulation results and whether we predict turn-taking
with each of three different game theoretic methods.

Predictor
Turn-taking (95% confidence) All N.E. Any N.E. Any policy in a N.E.
Predicted and present 1631 1729 1843
Predicted but not present 244 722 2102
Not predicted and not present 8716 8238 6858
Not predicted but present 212 114 0
Turn-taking present 1843 1843 1843
Total 10803 10803 10803

An alternative way of visualising the performance of predictors is to look at their
‘receiver operating characteristics’ (Fawcett, 2006), shown in Fig. 4.4. By adjusting
the confidence level of our post-simulation turn-taking classifier, φ in Eq. (4.13), we
change the number of functions that we consider to have turn-taking present. The
curves in Fig. 4.4 are parameterised by φ and show how well the predictors perform.
We compute the true and false positive rates in Fig. 4.4 as:

True positive rate =
Number of functions correctly predicted to have turn-taking

Total number of functions with turn-taking
(4.14)

False positive rate =
Number of functions erroneously predicted to have turn-taking

Total number of functions without turn-taking
(4.15)

An ideal predictor would have a true positive rate of 1 and a false positive rate of 0
for all values of φ.

4.4.3 Classifier verification

We verify that our prediction methods generalise beyond the particular set of reward
functions defined by Eq. (4.11) by testing our predictors on a new data set. We
repeated the simulation method in Section 4.4.2, but this time we used random reward
values that were not bounded to a finite, fixed set. Formally, we assign the reward
values, runused, rlostturn, etc., to uniformly distributed values in the range [0, 1]. Our
results are similar to those given above in Section 4.4.2. Out of 10000 theoretically
distinct, random reward functions, we found that the predictor that uses all Nash
equilibria corresponding to turn-taking had a true positive rate of 1427/1580 = 0.90
and a false positive rate of 329/8420 = 0.03. Our predictor based on any policy in a
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Figure 4.4: Receiver operating characteristics for the turn-taking predictors. As
we vary the threshold of the post-simulation turn-taking classification from 0% in
the lower left of the graph to 100% in the upper right, the false positive rates and
true positive rates of the predictors change, revealing their different characteristics.
The ‘×’s mark the 95% turn-taking threshold.
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Nash equilibrium had a true positive rate of 1580/1580 = 1 and a false positive rate of
2096/8420 = 0.25. From these results we conclude that our predictors are not specific
to the reward function set defined by Eq. (4.11) .

4.4.4 Designing rewards for turn-taking

Our classifier results can guide system designers who wish to have turn-taking as a
system behaviour, or conversely, who wish to not have turn-taking. First we must
express the medium access game in normal form, by computing the expected payoffs
of both agents for each pair of possible policies using the Markov chain method
described in Section 4.3.2. Next, we must compute the Nash equilibria of the medium
access game, as in Section 4.3.3. Then we can make predictions about the emergence
of turn-taking using the game theoretic predictors described in Section 4.4.2.

To create a reward function that will be conducive to turn-taking in a medium access
game when played by two Q-learning agents, a reward function should be chosen
such that all the Nash equilibria correspond to policies that produce turn-taking.
According to our simulation results, having all Nash equilibria as ones that produce
turn-taking is a good predictor for the presence of turn-taking in pairs of Q-learning
agents. This is not a strict guarantee, but the search space for policies that do produce
turn-taking is greatly reduced by only looking at cases where all the Nash equilibria
correspond to turn-taking policies. As described in Section 4.4.3, a randomly chosen
reward function has a 1580/10000 = 15.8% chance of producing turn-taking, but one
that comes from a population where all Nash equilibria correspond to turn-taking
increases the chance to 1427/1756 = 81.7%. (Out of the 1756 random reward functions
with all Nash equilibria corresponding to turn-taking, 1427 resulted in turn-taking
as a system behaviour in simulation.) Similarly, to create a reward function that will
be prohibitive to turn-taking, a reward function should be chosen such that no Nash
equilibria correspond to policies that produce turn-taking.

4.5 Discussion

Our simulations reveal that the Q-learning agents frequently fail to learn any of the
calculated Nash equilibria. If the agents were game-theoretic ‘rational’ agents with
perfect information we would expect them to always play a Nash equilibrium. In that
case, we could always expect turn-taking to emerge if all Nash equilibria correspond
to turn-taking policies and we could only expect turn-taking to emerge if at least any
one of the Nash equilibria corresponds to a turn-taking policy. Table 4.8 shows how
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Table 4.8: Some of our simulations showed turn-taking as a system behaviour.
This table shows those reward functions that produce turn-taking, broken down
by what portion of the Nash equilibria (N.E.) support turn-taking policies. (The
data are from the same simulation as that in Table 4.7)

Portion of N.E. policies that support turn-taking Number of simulations with
turn-taking at 95% confidence

All policies of all N.E. 1631
All policies of at least one N.E., but not all N.E. 98
At least one policy of one N.E., but no complete N.E. 114
No policy of any N.E. 0
Total 1843

many simulations produced turn-taking depending on how many policies in the Nash
equilibria supported turn-taking.

Our theoretical understanding for the success of the ‘any policy in a Nash equilibrium’
predictor is lacking. However, of the 1843 simulation ensembles that showed turn-
taking behaviour, 114 had Nash equilibrium with only one of the two agents’ policies
having support for turn-taking, as shown in Table 4.8. This suggests that a common
outcome in our simulations is for one agent to learn its policy in a Nash equilibrium
while the other agent plays a different policy. We leave investigation of this phenomena
to further research.

Agents in a multi-agent reinforcement learning context face a number of inherent
difficulties (Buşoniu et al., 2008). Q-learning is a single agent reinforcement learning
algorithm and ‘the nonstationarity of the MARL [multi-agent reinforcement learning]
problem invalidates most of the single-agent RL theoretical guarantees’ (Buşoniu et al.,
2008, p. 10). There are extensions to Q-learning that perform better in stochastic
games (Hu and Wellman, 2003; Greenwald and Hall, 2003) but, with the exception of
WoLF-PHC (Bowling and Veloso, 2002), these require agents to have knowledge of the
other agents’ actions or rewards. Our formulation of a medium access game assumes
that the agents cannot fully observe other agents’ actions, other agents’ rewards, or the
full system state. This limitation prevents us from applying algorithms that require
more information. We have opted to study Q-learning agents because of their wide
use in the literature and in practice: Buşoniu et al. (2008) note that some researchers
use single-agent reinforcement learning algorithms for multi-agent reinforcement
learning because the single agent algorithms can be simpler.

Our focus has been exclusively on pairs of identical agents but emergent turn-taking
is also useful in larger groups of agents. We believe that our methods will generalise
to more than two agents. From the point of view of a particular agent, situations
with more than two agents can be considered as unfair sharing between that agent
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and another aggregate agent which takes up the time of all the other agents. The
turn-taking metric is already suited to multiple agents, and can be extended to include
unequal sharing of the channel by weighting each agent’s allocation, replacing Eq. (4.5)
with:

αn(t, r) =
wn|N |

r

t+r−1

∑
t′=t

(
On
(
t′
)

∏
m∈N ,m 6=n

[
1−Om

(
t′
) ])

(4.16)

where smaller values of wn indicate that agent n should use the channel on more time
steps and ∑n∈N wn = 1. Our study so far has considered identical agents engaged in
rapid turn-taking, with a resolution of r = 2. Our choice of state representation and
reward definition were focused on this situation. In order for an agent to coordinate
turn-taking over a window of k time steps, we conjecture that the agent would need
state information relating to at least the last k inputs and outputs. The agents’ reward
functions would also require more information. For example, we could compute
the reward from the number of times the agent used the channel in the last k time
steps, σO = ∑k

t′=0 On(t− t′) and the number of time steps that the channel was in
use σI = ∑k

t′=0 In(t− t′). Such a reward function could reward an agent for using the
channel once out of every k time steps while the other agent or agents use the channel
the remainder of the time, if, for example, Rn(t) = 0 except Rn(t) = 1 for σO = 1 and
σI = k. Whether or not this reward function would enable the agents to coordinate
turn-taking depends on the agents’ state representation, learning algorithm and
whether or not the other agents had complementary reward functions that produce
Nash equilibria corresponding to turn-taking policies.

As previously mentioned, the agents’ states and rewards can be defined in many
ways and our specific choices were guided by simplicity. However, our methodology
can be applied to different state representations and different reward functions. The
analysis of deterministic agents can be extended to any finite state representation
by enumerating all policies and initial states that produce turn-taking behaviour.
Turn-taking is not an achievable behaviour in all state representations, for example,
turn-taking in pairs of deterministic agents is impossible if the agents have only one
state. Similarly, some reward function designs preclude turn-taking. For example, if,
in all cases, On(t) = 1 =⇒ Rn(t) > r∗ and On(t) = 0 =⇒ Rn(t) < r∗ for some value
of reward r∗, then the agents would value the action On(t) = 1 over On(t) = 0 for all
states and turn-taking would be excluded entirely. Computation of the agents’ average
rewards with the Markov chain method can be used so long as the agents’ states can
be derived from a Markovian global state, and so long as the agents’ rewards are
computable from a global state transition. In the absence of any simulation results
for alternative state representations, reward functions, or more than two agents, we
cannot be sure that our prediction methods will be accurate for larger groups of agents.
Further research is required, but we hypothesise that our use of Nash equilibria to
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predict the emergence of turn-taking will generalise to larger groups of agents and to
agents with alternative reward functions and state representations.

Suppose that a multi-agent system designer desires a particular joint behaviour other
than turn-taking. We suggest that our methodology may be more generally applicable
than only to designing rewards for turn-taking between agents in medium access
games. One way to apply our methodology to more general cases is as follows:

1. The desired behaviour must be quantified so that its presence or absence can be
measured. The turn-taking metric ττ is an example of how to quantify a desired
behaviour.

2. The environmental dynamics must be specified or, if the environment is physical,
modelled. In the case of our study, this is the interfering channel model of
Section 4.2.1.

3. The agents’ reinforcement learning algorithms, state definitions and reward
function should be designed with enough flexibility to encompass the desired
behaviour. At this stage, the reward function is in parametric form and our goal
is to find those parameters that produce the desired system behaviour.

4. The designer should enumerate all those stationary joint agent policies that
exhibit the desired behaviour. Essentially, this is expressing the desired joint
behaviour in terms of local policies. In our embodiment, this relies on a finite
state representation. If the desired behaviour is deterministic, then the stationary
policies will be deterministic as in Section 4.3.1.

5. The designer should calculate the agents’ expected rewards for all possible
stationary stochastic joint exploration policies using a Markov chain based on
a Markovian global state representation, as we do in Section 4.3.2. This allows
us to express the agents’ situation as a game in normal form for every reward
function parameter combination.

6. The Nash equilibria of the resulting games should be calculated. As our experi-
mental results in Section 4.4 suggest, the desired behaviour is likely to emerge
for those reward function parameter combinations that produce games where all
Nash equilibria correspond to the desired behaviour. Conversely, those reward
function parameter combinations that produce games where no part of any
Nash equilibrium corresponds to the desired behaviour are unlikely to display
the desired behaviour.

After the completion of steps 1 to 6, the search space for reward function parameters is
constrained and simulations can be more accurately directed. Therefore, this method
enables system designers to more effectively design reward functions to influence
sequential joint behaviour in groups of learning agents, provided that the desired
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behaviour can be measured. In this chapter, our analysis of this methodology is only
preliminary because our study focuses on the concrete case of emergent turn-taking
between Q-learning agents. Some work on emergent cooperation between Q-learners
playing the prisoners’ dilemma has been done by Waltman and Kaymak (2007) using
a similar Markov chain method.

Chapter 5 builds on this methodology for the cases of Markov decision processes,
normal form games and fully observable multi-agent stochastic games. However,
the methods in Chapter 5 do not follow this method exactly, focusing instead on
developing a method for designing reward functions that result in games with unique
Nash equilibria. Chapter 5 is not the only possible implementation of the above
methodology; alternatives are possible and may be necessary in cases where the
agents cannot fully observe the system state.

4.6 Related work

Multi-agent coordination through turn-taking is especially important in emergent
communication. Wagner et al. (2003) and Nolfi (2005) both survey previous research in
emergent communication. We argue that turn-taking should be included in emergent-
communication studies, because of the importance of turn-taking to human languages.
Turn-taking is a universal feature of human language (Stivers et al., 2009) and the
necessity for turn-taking influences language:

It seems productive to assume that, given conversation as a major, if not
the major, locus of a language’s use, other aspects of language structure
will be designed for conversational use and, pari passu [Latin: equally],
for turn-taking contingencies (Sacks et al., 1974, p. 722).

While some emergent-communication studies involve agents with built-in turn-taking
abilities (Goldman et al., 2007, Definition 19), other studies specifically examine
emergent turn-taking behaviour (Iizuka and Ikegami, 2004). Di Paolo (2000) examined
the emergence of turn-taking in simulated mobile agents controlled by neural networks
trained with genetic algorithms. Di Paolo’s agents took turns signalling each other
with a shared acoustic channel, which is similar to our use of an interfering channel
as a medium for examining the emergence of turn-taking. However, Di Paolo does
not examine different incentives for his agents, which is the central goal of our work.

In addition to being useful in emergent-communication research, emergent turn-taking
relates to a number of other research areas. Human-machine turn-taking quality is
important in spoken dialog systems (Raux and Eskenazi, 2008; Turunen et al., 2006)
and in human-robot interaction in a range of activities, from sorting coloured objects
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(Chao and Thomaz, 2010) to musical drumming interaction (Kose-Bagci et al., 2008;
Weinberg and Blosser, 2009). Turn-taking also occurs in a wide range of animal
species: in some situations pairs of fish take turns as a way of resolving conflicted
interests (Harcourt et al., 2010), some primate species take turns grooming each other
(Manson et al., 2004), and mating pairs in some Antarctic penguins take turns foraging
at sea while the other mate stays with the recently hatched chick or chicks (Trivelpiece
et al., 1987, p. 355). Our research enables further research in modelling turn-taking in
domains such as human-robot interaction and biology.

Neill (2003) describes the ‘turn-taking dilemma,’ a variant on the prisoners’ dilemma
where the optimal strategy is for the players to alternate between one defecting and
the other cooperating and one cooperating and the other defecting. This situation
appears in the natural behaviour of groups of dwarf mongoose (Rasa, 1989). Neill
ranks fixed strategies with memories of length 1 and 2 based on their payoffs, with
and without noise. Neill’s study bears some similarity to our study of stationary
policies in Section 4.3 but he does not consider learning agents or specifically examine
different payoffs for the agents. While Neill uses a concept of ‘evolutionary dominance’
(Neill, 2001) to rank strategies, we use the turn-taking metric ττ.

Emergent turn-taking could be productively applied to medium access control in
self-organising networks of heterogenous wireless systems. Researchers have already
modelled interfering wireless networks as multi-agent cooperative or competitive
games (Larsson et al., 2009; Leshem and Zehavi, 2009; Yang et al., 2009); a kind of
turn-taking is the optimal solution in some cases (Larsson et al., 2009, p. 21). Mecha-
nism design legislation for heterogeneous wireless networks relies on knowledge of
conditions required for the emergence of turn-taking or other desirable coordination
amongst the participating network nodes. We enable further research into emergent
turn-taking in computer networks by providing researchers with further knowledge
on what incentives are required for the emergence of turn-taking in medium access
games played by pairs of Q-learning agents.

Chen et al. (2010) propose a game-theoretic approach to medium access control based
on ‘random access games,’ which bear some similarity to our medium access games.
Chen et al. define a random access game by the agents’ utility functions and a channel
contention measure, which is similar to the way we define a medium access games
using agents’ reward functions and an interfering channel model. Chen et al. consider
that the agents must update their channel access probabilities so as to reach the
(usually) unique Nash equilibrium of the random access game, whereas we consider
that agents must make a binary transmission decision at each time step and that
the medium access game may have multiple Nash equilibria. Chen et al. design
a near-optimal medium access protocol based on CSMA/CA using gradient play
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(Flam, 2002) to update the agents’ channel access probabilities while we examine the
emergence of turn-taking between Q-learning agents.

Helbing et al. (2005) present the results of an experiment where people plan driving
routes in a computer laboratory. Helbing et al. focus on congestion in a two road
network: a slow road and a fast road between the same two destinations. For a
number of iterations, two (or sometimes four) players choose between the two roads
and receive payoffs that depend on both player’s choices. In later iterations, a form
of turn-taking sometimes emerges in the route choices. Helbing et al. conjecture
that ‘alternating forms of reciprocity’ occur when the sum of an agent’s payoffs
for turn-taking behaviour is higher than for a short-sighted, greedy strategy. (In
Helbing et al.’s terminology, P12 + P21 > 2P11.) Helbing et al. reproduce the results
of their human-based experiments with a novel reinforcement learning model, but
they calculate their agents’ payoffs with central information. We consider that fully
decentralised control is an essential assumption in multi-agent reinforcement learning
medium access control systems.

Colman and Browning (2009) simulate the evolution of cooperative turn-taking in
iterated static games played by Moore machines trained with a genetic algorithm.
Colman and Browning find that turn-taking can emerge ‘without communication
or insight on the part of the players, and without the use of randomization (mixed
strategies)’ (Colman and Browning, 2009, p. 959). Colman and Browning use the
average payoffs, the proportions of each move combination, ‘reciprocity’ (Colman
and Browning, 2009, p. 955) and the prevalence of different kinds of three-round
histories as turn-taking performance measures, while we use measures derived from
our turn-taking metric ττ.

4.7 Conclusion

We define ‘medium access games’ as a set of multi-agent stateful games. Medium
access games model situations where turn-taking is useful, like human conversations
and computer networks. We examine medium access games played by pairs of agents
with a minimal definition of state and identify which deterministic policies give rise to
turn-taking behaviour. We use Markov chain theory to derive the expected rewards for
agents with stationary stochastic policies so that we can compute the Nash equilibria
of medium access games. We use the Nash equilibria calculated for stationary policies
to predict the presence or absence of turn-taking in medium access games played by
Q-learning agents. For Q-learning agents, we find that turn-taking emerges with a
high probability in those medium access games where all Nash equilibria support only
turn-taking policies and that turn-taking does not emerge in those medium access
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games where no policy in any Nash equilibria supports turn-taking policies. Our
results enable system designers to predict the emergence of turn-taking in medium
access games played by Q-learning agents and to design rewards that are either
conducive or prohibitive to turn-taking.

This chapter supports the thesis by providing an example of how sequential joint
behaviour in groups of learning agents can be influenced by appropriate reward
functions where the ‘appropriateness’ of the reward function is determined using a
metric for the desired behaviour. We discuss how to apply our methodology to achieve
system behaviours other than turn-taking in medium access games. In Chapter 5,
we discuss an extension of this chapter’s methodology for algorithmically designing
reward functions for stochastic games.
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Chapter 5

A Method for Designing the
Rewards of Stochastic Games

As we saw in Chapter 4, constructing reward functions for even simple joint behaviours
is not straightforward. However, the Nash equilibria of a system are useful predictors
of the joint behaviour. In this chapter, we extend the methodology of Chapter 4
to examine how we might design reward functions that result in desirable Nash
equilibria. In Chapters 3 and 4, we focus on turn-taking as an example of a sequential
joint behaviour that may occur in groups of learning agents. We now tackle the more
general problem of algorithmically designing rewards to influence the sequential joint
behaviour of learning agents, assuming that we know the set of desired behaviours.
The method that we develop can be used to construct reward functions that lead
groups of agents toward a wide range of sequential joint behaviours, not only turn-
taking.

Algorithmically designing reward functions for multi-agent systems is difficult because
we must assign credit for a global success to the deserving agents and we may
need to induce coordination. In this chapter, we model multi-agent systems as
stochastic games. We start with a stochastic game that has no reward function and
we find a reward function that makes a particular joint policy the unique Nash
equilibrium, provided that such a reward function exists. This way, a system designer
can algorithmically design a reward function that will lead to a desirable Nash
equilibrium if he or she can find a desirable stationary stochastic joint policy. We
build our method for stochastic games on simpler techniques that apply to Markov
decision processes and normal form games. We formally prove that our methods are
correct and provide an example of how to design a reward function for a three-agent
system that results in turn-taking as a system behaviour.
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5.1 Introduction

Multi-agent systems have a myriad of applications, from financial trading simulations
(Sherstov and Stone, 2005), to robotic soccer (Kitano et al., 1997) and automatic musical
rhythm generation (Eigenfeldt, 2007). Multi-agent reinforcement learning (Buşoniu
et al., 2008) is a promising approach to controlling multi-agent systems, but designers
still have the problem of how to choose reward functions for the agents that produce
desirable behaviour. In many situations, each agent has a predetermined utility
function (von Neumann and Morgenstern, 1944) that encodes its preferences over all
possible outcomes. For example, a financial trading agent may want to make money
for itself, regardless of the payoffs of other agents. However, in some cases, a system
designer must design rewards for the agents to produce a particular joint sequential
behaviour. Suppose a musician is designing a percussion ensemble of musical agents
to produce rhythms of some kind. In this case, the individual reward functions of
each agent are free variables that the musician can adjust to control the joint behaviour
of the ensemble.

Agents in a multi-agent reinforcement learning system learn to maximise their reward
function. Because each agent earns its own rewards in an uncertain environment, we
apply the common model that multi-agent reinforcement learning agents are playing
a ‘stochastic game’ (Shapley, 1953; Littman, 1994). Our objective is to design reward
functions for each agent that will result in a desired joint behaviour. One approach is
to simply reward every agent equally and in proportion to how well all the agents
are producing the desired behaviour; this results in a purely cooperative game. If the
agents maximise the shared reward function correctly, then, by definition, the agents
produce the desired behaviour. However, from the perspective of an individual agent,
a shared reward function can make learning the right actions more difficult. If an agent
receives a large reward, was that because it took good actions itself or did another
agent perform well? In a large group of agents, an individual agent’s contribution to
the global performance may be barely noticeable. Ideally, we would only reward each
agent for its own contribution to the global performance. Furthermore, agents face
the difficulty of coordinating their actions. For example, having all agents drive on
the right hand side of the road is nominally of equal value to having them all drive
on the left, but the outcome is costly if the agents follow a mix of the two policies.

In this chapter, we assume that we know the set of behaviours that we desire for the
agents. Our approach is to encode a known desired joint behaviour as the unique
Nash equilibrium of a stochastic game. By designing reward functions with unique
Nash equilibria, we alleviate the difficulty of each agent having to select between
multiple equilibria. Designing games with unique Nash equilibria is conceptually
simple, but the details of game construction can be complex for mixed Nash equilibria.
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Furthermore, we cannot encode all joint behaviours as Nash equilibria in a stochastic
game.

Stochastic games are a generalisation of Markov decision processes and matrix games.
Fig. 5.1 illustrates the hierarchy of models that we use in this chapter. Our contribu-
tions to the design agenda of multi-agent reinforcement learning start with the special
cases shown in Fig. 5.1 and progress to the general case of all stochastic games:

• In Section 5.2, we describe how to design rewards for Markov decision processes
that result in some desired deterministic policy. We prove that our method
results in a Markov decision process where the unique optimal policy is that
desired policy.

• In Section 5.3, we explain how to design rewards for normal form games. We
separately consider three cases:

1. The desired joint action distribution is deterministic (this case is trivial).

2. The desired joint action distribution is stochastic and the game has two
agents (this case has already been addressed in the literature).

3. The desired joint action distribution is stochastic and the game has an
arbitrary number of agents (necessary and sufficient conditions for this
case have been given in the literature, but, to our knowledge, our method
is novel).

We prove that these three methods result in games with unique Nash equilibria.
We discuss cases where it is not possible to encode a desired joint behaviour as
a Nash equilibrium.

• We combine our methods for Markov decision processes and normal form games
to produce a complete method for designing rewards for general case stochastic
games. We prove that this method results in a unique Nash equilibrium in the
space of stationary strategies and demonstrate our method with an example.
(See Section 5.4.)

We discuss possible extensions to our method in Section 5.5 and we review related
work in Section 5.6. We draw conclusions in Section 5.7.

5.2 Designing rewards for Markov decision processes

Before we address the general problem of designing rewards for general stochastic
games, we develop our understanding by considering some special cases of stochastic
games. In Section 5.3 we consider designing rewards for normal form games. In this



5.2 DESIGNING REWARDS FOR MARKOV DECISION PROCESSES 87

Stochastic games
(Many agents & states)

Markov
decision processes

(One agent, many states)

Markov
chains

(No agents,
many states)

Normal
form games

(Many agents, one-shot)

Figure 5.1: Stochastic games are a generalisation of normal form games and
Markov decision processes; the latter generalise Markov chains.

section, we consider designing rewards for stochastic games for the special case of
one agent: designing rewards for Markov decision processes. We demonstrate how to
identify if a reward function exists for a Markov decision process that will produce a
desired behaviour and we construct such a reward function for those cases where it
does exist.

A Markov decision process is a tuple, D = (S ,A, T, R) where S is a set of states,
A is a set of actions, T : S × A × S → [0, 1] is a state transition function and
R : S ×A× S → R is a reward function. The goal of the agent is to find an optimal
policy, a stochastic mapping between states and actions, π∗ : S × A → [0, 1]. A
policy, π∗, is optimal if and only if, for all states s ∈ S , it maximises the γ-discounted
expected reward starting in state s:

v(s, π∗) = (1− γ)
∞

∑
t=0

γtEs,π∗ [R(t)] (5.1)

where R(t) is a random variable representing the reward at time t. Theorem 2.7.2 of
Filar and Vrieze (1997) states that π∗ can be a deterministic policy, that is, the agent
can select a single action with probability 1 for each state in such a way that maximises
the discounted expected reward for each state (Filar and Vrieze, 1997, p. 26). The set
of optimal policies for a Markov decision process need not only have one member,
but there exists at least one optimal deterministic policy.
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5.2.1 Formalising reward design for Markov decision processes

Suppose we take the perspective of a system designer rather than the perspective of
the agent. How can we design a reward function, R, to promote a particular class of
behaviours? Filar and Vrieze show that we lose no generality by restricting agents
to the set of stationary policies for γ-discounted Markov decision processes (Filar
and Vrieze, 1997, Corollary 2.6.2 on p. 55). Therefore, we consider that an agent’s
‘behaviour’ in a Markov decision process is its policy and that the set of desired
behaviours is B, a subset of the set of all stationary policies. We can now formally
express Markov decision process reward design:

Definition 5.1. Suppose we have a Markov decision process without a reward function
D−R = (S ,A, T) and a set of desired behaviours, B. A reward function R† is a design
compliant reward function if and only if all optimal policies of the Markov decision process
(D−R, R†) are in the set of desired behaviours.

There may be more than one possible value for R†; in this case, we should choose
R† to best assist agents that are learning from R†. Delayed rewards make learning
more difficult, so a good reward function will reward agents in such a way that their
myopic best actions are also optimal in the long run. Another difficulty that agents
face while learning is estimating the expected reward E [R (s, a, s′)] for a particular
action a ∈ A in a given state s. This difficulty relates to the definition of the reward
function; as written, R(s, a, s′) depends on the current state, the current action and
the next state. Since the next state is a stochastic function of the current state and
the current action, the reward for the agent is also a stochastic function. A system
designer can help agents learn by choosing a reward function with the following
easy-learning properties:

1. The optimal policy does not change with the discount rate, so that optimal
actions in the short run are also optimal in the long run.

2. The reward values do not depend on the next state, but only on the current state
and the current action, so that action-value estimation is easier.

5.2.2 Rewarding an agent for following a successful policy is a design
compliant reward function

� We can construct design compliant reward functions that also satisfy the two
desirable properties of an easy-to-learn reward with the method described in

Lemma 5.1 and Theorem 5.1, as follows:

Lemma 5.1. Let π0 be a deterministic policy such that π0 ∈ B. If no such deterministic
policy π0 exists, then no reward function is design compliant for D−R.
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Proof. Suppose the contrary: some reward function is design compliant but there
exists no deterministic policy in B. This implies that we can pair some reward
function, R×, with D−R to form a complete Markov decision process, D×, such that
each optimal policy is also a desired behaviour. Every Markov decision process has at
least one optimal deterministic policy (Filar and Vrieze, 1997, Theorem 2.3.1, p. 26).
So there must be some deterministic policy that is optimal for D×. We supposed that
no deterministic policy was in B but by Definition 5.1 all optimal policies are in B.
Therefore no such R× can exist.

Theorem 5.1. Let R0 be a reward function with no dependency on the next state such that
R0(s, a, s′) = R0(s, a) = π0(s, a) ∈ {0, 1}, where π0 is as given in Lemma 5.1. Then R0 is
a design compliant reward function for the reward-less Markov decision process D−R, if π0

exists. Furthermore, R0 possesses both the above easy-learning properties.

Proof. First, we prove that π0 is an optimal policy for D0 = (D−R, R0), the Markov
decision process made up of D−R and R0. Then, we show that π0 is the only optimal
policy of D0.

If π0 is an optimal policy, then it must maximise the discounted value of each state.
We can express the value of each state with v(π), the vector of state values given the
agent’s policy. Let P(π) be a probability transition matrix with entries:

[P(π)]ij = p(sj|si, π) = ∑
a∈A

T(sj|si, a)π(si, a) (5.2)

We calculate the vector of expected rewards as:

r(π) =

(
∑

a∈A
R(s, a)π(s, a) for s ∈ S

)T

(5.3)

We can then calculate the vector of state values for a particular policy π as:

v(π) = (1− γ)
∞

∑
t=0

γtPt(π)r(π) (5.4)

= (1− γ) [I− γP(π)]−1 r(π) (5.5)

See also Eqs. 2.4 and 2.5 on p. 13 of Filar and Vrieze (1997). An optimal policy is one
that maximises v. We can express the value of an optimal policy starting in state s as:

v(s) = max
a∈A

{
(1− γ)R(s, a) + γ ∑

s′∈S
p(s′|s, a)v(s′)

}
(5.6)

We now calculate v0(π0), the value vector for π0, and show that all of its elements
satisfy Eq. (5.6). To find the value of v0(π0), we must compute values for the quantities
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on the right-hand-side of Eq. (5.5). First, we calculate the value of r(π0). We know
that ∑a∈A π0(s, a) = 1 because π0 defines a probability distribution over the set of
actions for each state. Also, because π0(s, a) is zero for all but one action for each
state, we know that:

∑
a∈A

π0(s, a) = ∑
a∈A

π0(s, a)π0(s, a) (5.7)

and, because R0(s, a) = π0(s, a),

∑
a∈A

R0(s, a)π0(s, a) = 1 (5.8)

Therefore, by Eq. (5.3), r(π0) = 1|S|.

Second, we evaluate
[
I− γP(π0)

]−1. Because T is unknown, we cannot calculate
P(π0) entirely. Fortunately, we only need to calculate the row-sums of

[
I− γP(π0)

]−1,
because we know that r(π0) equals 1 for each state. Because the rows of P(π0) are
probability distributions, we know that

|S|

∑
j=1

[
P
(
π0)]

ij = 1 (5.9)

for all i, so
|S|

∑
j=1

[
I− γP

(
π0)]

ij = 1− γ (5.10)

for all i. Also, the following is true for all invertible matrices:

If the sum of the elements in each row of a square matrix is k, then the
sum of the elements in each row of the inverse matrix is 1/k (Wilansky,
1951).

Since
(
I− γP

[
π0]) is invertible, this implies that

|S|

∑
j=1

[(
I− γP

[
π0])−1

]
ij

=
1

1− γ
(5.11)

for all i. Now we can calculate v0(π0):

v0(π0) = (1− γ)
(
I− γP

[
π0])−1

1|S| (5.12)

= (1− γ)
1

1− γ
1|S| (5.13)

= 1|S| (5.14)

That is, 1|S| is an eigenvector of (1− γ)
(
I− γP[π0]

)−1 with eigenvalue 1.
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For v0(π0) to be a value vector of an optimal policy, Eq. (5.6) must remain satisfied
for all s if v0(s) replaces v(s). As demonstrated in Eq. (5.14), for all s ∈ S :

v0(s) = 1 (5.15)

For π0 to be optimal, the following must be true for all s, s′ ∈ S × S :

v0(s) = max
a∈A

{
(1− γ)R0(s, a) + γ ∑

s′∈S
p(s′|s, a)v0(s′)

}
(5.16)

Since p(s′|s, a) is a probability distribution and v0(s′) is known and is equal to 1 for
all values of s′, we know that ∑s′∈S p(s′|s, a)v0(s′) = 1 and therefore:

v0(s) = max
a∈A

{
(1− γ)R0(s, a) + γ ∑

s′∈S
p(s′|s, a)v0(s′)

}
(5.17)

= max
a∈A

{
(1− γ)R0(s, a) + γ

}
(5.18)

Because R0(s, a) has a unique maximum at R0(s, a) = π0(s, a) = 1:

v0(s) = (1− γ) + γ (5.19)

= 1 (5.20)

which is the same value as computed in Eq. (5.14). Therefore, Eq. (5.6) is satisfied
for all states, v0(π0) ≥ v (element-wise) for all possible value vectors v and π0 is an
optimal policy of D0 for γ ∈ [0, 1). Because R0 is optimal for all discount rates, R0

satisfies the first of the easy-learning properties. Also, because R0 is not a function of
the next state, it satisfies the second easy-learning property.

For R0 to be a design compliant reward function, all optimal policies must be in
the set of desired behaviours. To complete this proof, we now prove that there are
no other optimal policies. If there were another optimal policy, π×, then it would
need to achieve a payoff vector that is equal to the known optimal payoff vector:
v×(π×) = v0(π0). This would imply that there is some state s× where the agent earns
the same mean immediate reward by taking some action other than that specified by
π0. However, by the definition of R0, all actions other than that specified by π0 earn
strictly smaller immediate rewards. Consequently, π0 is the unique optimal policy for
D0 and therefore R0 is a design compliant reward function for D−R.
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5.3 Designing rewards for normal form games

Here we consider how to design rewards for ‘normal form games,’ another special
case of stochastic games. A normal form game is a stochastic game with no states.
Formally, a normal form game is a tuple Γ = (N ,A, R) whereN is a set of agents, A is
a joint action space, An is the action space of agent n, R : A → R|N | is a vector-valued
joint reward function and Rn : A → R is the reward function for agent n.

We use the following notation in our discussion of normal form games:

• Let an represent an element in An (an is an action for some agent n) and let a
represent an element in A (a is a joint action).

• Let a−n represent a vector of actions for all agents except agent n, and (an, a−n) =
a and let A−n be the set of possible values for a−n, where A−n = ×m∈N ,m 6=nAm.

• Let πn represent a probability distribution over agent n’s actions.

• Let πn(an) be the probability that agent n selects action an.

• Let π represent a vector of each agent’s probability distribution over its actions:
π = (πn for all n ∈ N ). We refer to π as a ‘joint policy.’ Notice that a joint
policy defines a probability distribution over joint actions, but that not every
probability distribution over joint actions can be written as a joint policy.

As in Section 5.2, we take the perspective of a system designer. How can we design a
reward function to promote a particular class of joint behaviours? In a normal form
game, a joint behaviour is a joint policy. We consider that the game designer has a set
of desirable joint policies, B. If some joint policy π is in B, then that joint policy is a
desired outcome. Normal form game reward design can be expressed formally:

Definition 5.2. Suppose we have a set of agents N and a set of desirable joint policies, B. A
reward function R† is a design compliant reward function if and only if N and R† comprise
a normal form game Γ† such that every Nash equilibrium of Γ† is a desirable joint policy.

In the remainder of this section, we examine reward design methods for three classes
of normal form games:

• First, in Section 5.3.1, we consider normal form games for which a deterministic
joint policy is in B. This case is trivial.

• Then, in Section 5.3.2, we consider two-agent normal form games where only
stochastic joint policies are in B. Quintas (1988) presented an alternative method
for this case; we discuss Quintas’ method in Section 5.6.
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• Finally, we extend our methods to stochastic joint policies with any number
of agents, in Section 5.3.3. This case is difficult. Our method draws on our
techniques for the two-agent case.

For each case, we propose one possible method for designing rewards that results in a
single Nash equilibrium. We present the latter two methods as algorithms.

5.3.1 When a deterministic joint policy is desirable

Suppose that πD is a desirable deterministic joint policy so that πD is in B. In this case,
we can satisfy the normal form game reward design criteria with a game that has only
pure Nash equilibria. We now construct a reward function that determines a game
where πD is the one and only Nash equilibrium. For all n ∈ N , the deterministic
distribution πD

n (an) = 1 for some action an ∈ An and πD
n (a′n) = 0 for all other actions

a′n 6= an.

In order to help the agents learn their reward function better (and to simplify our
analysis), we decouple the reward function for agent n from the reward functions of
all other agents, m 6= n. This way, the reward for agent n for a particular joint action
a, Rn (a), depends only on agent n’s action. This assumption limits this method to
games with only pure Nash equilibria. Let R0 be a joint reward function with each
agent’s reward function defined as:

R0
n(an, a−n) =

{
1 if πD

n (an) = 1
0 otherwise

(5.21)

for all an ∈ An, all a−n ∈ A−n and all n ∈ N .

Theorem 5.2. If πD is a deterministic joint policy where πD ∈ B, and R0 is constructed as
in Eq. (5.21), then R0 is a design compliant reward function for ΓD = (N , R0).

Proof. First, we show that πD is a Nash equilibrium of ΓD, then we show that ΓD has
no other Nash equilibria. In order for πD to be a Nash equilibrium, the best response
condition must hold for all the agents. The best response condition is defined in terms
of vn(an), agent n’s expected value for taking action an, which we compute as:

vn(an) = ∑
a−n∈A−n

Rn(an, a−n) ∏
m∈N ,m 6=n

πm(am) (5.22)

where am is agent m’s action in a−n and given that all other agents have fixed their
policies at πm for m ∈ N , m 6= n. If agent n’s policy, πn, is its best response to the
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other agents’ policies, then the following holds for all an where πn(an) > 0:

vn(an) = max
a′n∈An

{vn(a′n)} (5.23)

To show that πD is a Nash equilibrium of ΓD, we must demonstrate that each agent’s
policy is a best response to the other agents’ policies. By Eq. (5.21), πD

n (an) > 0 implies
that R0

n(an, a−n) = 1. Because πD
m is a probability distribution for all m, we know that

∑a−n∈A−n ∏m∈N ,m 6=n πD
m(am) = 1; therefore πD

n (an) > 0 implies vn(an) = 1. Because 1
is the maximum value of R0

n, we know that πD
n (an) > 0 implies maxa′n∈An{vn(a′n)} = 1

and therefore Eq. (5.23) is satisfied for all agents. Because πD satisfies the best response
condition for all agents n ∈ N , we know that πD is a Nash equilibrium of ΓD.

Suppose that ΓD had another Nash equilibrium, π× 6= πD. This would imply that
Eq. (5.23) holds when we replace π in Eq. (5.22) with π×. However, maxa′n∈An{vn(a′n)}
still takes the same value, because Eq. (5.21) removes all dependencies on other
agents’ actions from each agent’s reward function. Therefore, π×n (an) > 0 implies
that R0

n(an, a−n) = 1, but this means that π× = πD. Therefore, no such π× can exist.
Because πD is the only Nash equilibrium and πD ∈ B, we have shown that R0 is a
design compliant reward function.

5.3.2 Algorithms for generating fully mixed two-agent games

Suppose that no deterministic joint policy is in the set of desired behaviours. In
this case, we can only satisfy the normal form game reward design criteria with a
game that has no pure Nash equilibria. We now consider designing reward functions
for two-agent games that result in a unique desired Nash equilibrium. We start
by examining the game of ‘Matching Pennies’ where each agent has two possible
actions and a single mixed Nash equilibrium. We generalise the game of Matching
Pennies to two agent games with any number of actions. We present an algorithm that
generates two agent games with any desired mixed Nash equilibrium and prove that
the algorithm always produces games with the desired equilibrium. Our algorithm
is not the only way to produce games with unique mixed Nash equilibria so we
comment on alternative methods in Section 5.5.

The two-agent game of Matching Pennies is defined as:

N = {Column agent, Row agent} (5.24)

AColumn agent = ARow agent = {H, T} (5.25)

with a reward function as shown in Table 5.1. One interpretation of Matching Pennies
is that each of two children have a coin, which they place on a table with either heads
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Table 5.1: The game ‘Matching Pennies.’ We show the reward function values in
the form of reward for row agent, reward for column agent.

Column agent
H T

Row agent
H 1, 0 0, 1
T 0, 1 1, 0

H T

H 1, 0 0, 1

T 0, 1 1, 0

Figure 5.2: The preferences of two agents in Matching Pennies are intransitive.
The vertical lines represent preferences for the row agent and the horizontal lines
represent preferences for the column agent.

facing up (H) or tails facing up (T). If the coins match, one child receives a prize; if
the coins do not match, the other child receives the prize.

The unique Nash equilibrium of Matching Pennies is for both agents to play H and
T with equal probability. In order to extend this game to more than two actions per
agent, we must build a better intuition as to why Matching Pennies has only one
mixed Nash equilibrium. Every normal form game has at least one (possibly mixed)
Nash equilibrium (Nash, 1950), but some games have only pure Nash equilibria
(like the Prisoners’ Dilemma in Table 2.2 on p. 22). In order for a game to have a
pure Nash equilibrium, the game must have some set of actions where each agent
is not unilaterally incentivised to change its action. On the other hand, if we are
to design a game with no pure Nash equilibria, then, for each joint action, at least
one of the agents must prefer an alternative joint action. In other words, the agents’
preferences over the game outcomes must be an intransitive operator (von Neumann
and Morgenstern, 1944, §4.4); we call such games ‘intransitive.’ Matching Pennies
is an intransitive game. Fig. 5.2 illustrates how the agents’ preferences form a loop:
the row agent prefers RRow agent(H, H) to RRow agent(T, H) but then the column agent
prefers RColumn agent(H, T) to RColumn agent(H, H), and so on, for all four outcomes of
Matching Pennies.

� By considering the ordering of agent preferences, constructing an intransitive
normal form game with an arbitrary number of actions for each agent is equiv-

alent to constructing a graph with certain properties. Suppose we have a pair of
agents N = {1, 2} and a set of actions An for each agent n ∈ N , where the number
of actions available to each agent is equal, |A1| = |A2|. We base our game around
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a graph, G = (V , E), with vertices for each action of each agent, V(G) =
⋃

n∈N An.
For example, if A1 = {a1

1, a2
1, a3

1, a4
1} and A2 = {a1

2, a2
2, a3

2, a4
2}, then the vertices of G

will be V(G) = {a1
1, a2

1, a3
1, a4

1, a1
2, a2

2, a3
2, a4

2}. In a slight abuse of notation, we refer to
vertices of G with elements of A1 and A2. The graph must be directed. An arc in
E(G) from some an ∈ An to am ∈ Am means that agent m values its action am more
highly than any of its other actions, if agent n plays action an. Because this definition
of the arcs only makes sense when n 6= m, the graph is a bipartite graph: there are
no arcs from the vertices in A1 back to the vertices in A1. Furthermore, we consider
that each vertex has a single arc to it and a single arc from it. For the game to be
intransitive, agent n’s best action must change whenever another agent m changes
action, for all agents n and m 6= n. Therefore, the graph G must be a Hamiltonian
graph. In summary, a graph can be transformed into an intransitive two-agent normal
form game if it meets the following criteria:

1. Each agent has the same number of actions.

2. The graph has vertices for each action of each agent.

3. Each vertex has a single arc to it and a single arc from it.

4. There are no arcs leading from one of agent n’s actions to another of agent n’s
actions, for all n ∈ N .

5. The graph has a Hamiltonian cycle.

Input : A directed bipartite graph, G, with vertices V(G) = A1 ∪A2 and
with an arc to each vertex and an arc from each vertex such that the
graph has a Hamiltonian cycle.

Output: Reward functions, R1 and R2, for an intransitive two-agent normal
form game.

Set Rn(an, am)← 0 for all an, am ∈ An ×Am where 〈n, m〉 ∈ {〈1, 2〉, 〈2, 1〉}.1

Choose an arbitrary starting vertex an in V(G).2

While at least one vertex has not been visited do3

Let am be the direct successor to an.4

Set Rn(an, am)← 1.5

Advance to the next vertex, i.e. an ← am.6

Return R1 and R2.7

Algorithm 5.1: A method for converting a directed bipartite graph with a
Hamiltonian cycle into an intransitive two-agent game.

Given an action preference graph that meets the above criteria, G, we can construct
an intransitive normal form game with Algorithm 5.1. Fig. 5.3 shows an example
graph (5.3a) and the game that results from applying Algorithm 5.1 to the graph
(5.3b). We generated Fig. 5.3a with Algorithm A.1 in Appendix A which generates an
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A1

a1
1

a2
1

a3
1

a4
1

A2

a1
2

a2
2

a3
2

a4
2

(a) Action preference graph

a1
1 a2

1 a3
1 a4

1

a1
2 1, 0 0, 1

a2
2 0, 1 1, 0

a3
2 0, 1 1, 0

a4
2 0, 1 1, 0

(b) Reward table

Figure 5.3: An intransitive two-agent game where each agent has four actions.
The intransitive nature of the game can be represented as a bipartite graph with a
Hamiltonian cycle (a). The table on the right (b) shows the reward functions with
the agent preferences marked as arrows. The blank cells in (b) have a value of 0
to both agents.

action preference graph that meets the above criteria for any number of agent actions.
Because the game in Fig. 5.3b is intransitive, it cannot have a pure Nash equilibrium;
therefore it has at least one mixed Nash equilibrium. The game in Fig. 5.3b is a
generalisation of Matching Pennies to four actions per agent and has a single Nash
equilibrium where each agent plays each action with equal probability. We can use
graphs other than that in Fig. 5.3a to make four action generalisations of Matching
pennies; for example, we can permute the actions of either agent and still have a
feasible solution. If both agents have the same number of actions, |A1| = |A2|, then
we can construct a normal form game that has a single Nash equilibrium where each
agent plays each action with equal probability by running Algorithm 5.1 with any
graph that meets criteria 1-5, as discussed above.

Theorem 5.3. A two-agent game constructed with Algorithm 5.1 has a single, fully mixed
Nash equilibrium where the agents play each action with equal probability.

Proof. ‘A necessary and sufficient condition for the existence of a bimatrix game that
has (x̄, ȳ) as its unique equilibrium point is that k(x̄) = k(ȳ),’ (Kreps, 1974, p. 115)
where k(·) represents the size of the support of a policy. Therefore, if we can show
that Algorithm 5.1 constructs two-agent games with fully mixed Nash equilibria, then
we know that Algorithm 5.1 constructs games with unique equilibria.

In a Nash equilibrium, each agent’s policy, πn for all n ∈ N , must meet the best
response condition described in Eqs. (5.22) and (5.23). If a game has a fully mixed
Nash equilibrium where the agents play each action with equal probability, then the
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probabilities πn(an) = 1/|An| for all an ∈ An and all n ∈ N must satisfy the best
response condition. We check that π1(a1) = 1/|A1| for all a1 ∈ A1 is a best response
to π2(a2) = 1/|A2| for all a2 ∈ A2. The following holds for all of agent 1’s actions,
a1 ∈ A1:

v1(a1) = ∑
a2∈A2

R1(a1, a2)π2(a2) (5.26)

If π2(a2) = 1/|A2| for all a2 ∈ A2, then Eq. (5.26) can be written as:

v1(a1) =
∑a2∈A2

R1(a1, a2)
|A2|

(5.27)

for all a1 ∈ A1. We know that R1(a1, a2) = 1 for one and only one action a∗1 ∈ A1

because each action in A1 is a vertex of G in Algorithm 5.1 and each vertex is
visited exactly once in the while loop starting at line 3. The other values of R1 are
zero. Therefore, for all a1 ∈ A1, we know that ∑a2∈A2

R1(a1, a2) = 1 and v1(a1) =
maxa′1∈A1

v1(a′1) = 1/|A2|. Consequently, the fully mixed uniformly distributed π1 is
a best response to the fully mixed uniformly distributed π2. By symmetry, π2 is a best
response to π1. Therefore, π1 and π2 comprise a fully mixed Nash equilibrium.

In this section, our goal is to design reward functions that produce a single desired
Nash equilibrium for two-agent normal form games. Our graph method generalises
Matching Pennies to any number of actions, but only if both agents have the same
number of actions and only if the desired Nash equilibrium is the one where each
action has equal probability. We need to generalise our graph method to non-equal
probabilities, but fortunately we have no need to consider Nash equilibria with
unequal support sizes. For non-degenerate two-agent games, the size of the support
of a mixed Nash equilibrium is equal for both agents (von Stengel, 2007, Proposition
3.3 on p. 56). Consequently, we can design a square k× k game for |An| = k and
|Am| > k actions, then replace agent m’s missing actions with zero rewards for both
agents. Algorithm 5.2 uses Algorithm 5.1 to create a two-agent normal form game
with any single fully mixed Nash equilibrium.

Theorem 5.4. A two-agent game constructed with Algorithm 5.2 has a single fully mixed
Nash equilibrium where the agents play each action with the probabilities specified by πn for n ∈
{1, 2}.

Proof. A game constructed with Algorithm 5.2 has at least one Nash equilibrium
(Nash, 1950), and if it has a fully mixed Nash equilibrium, then it has only one mixed
Nash equilibrium. This is because Algorithm 5.2 merely modifies the values of the
reward functions produced by Algorithm 5.1, so we can apply the reasoning given in
the proof of Theorem 5.3.
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Input : The probabilities that each agent will take each action at the Nash
equilibrium, where πn(an) is the probability that agent n takes action
an, for each agent n ∈ {1, 2} and each action an ∈ An. We assume that
πn(an) > 0 for both agents and all actions and that both agents have
the same number of actions.

Output: Reward functions for both agents, R1 and R2, that comprise a game
with one Nash equilibrium where agents play actions at the given
probabilities.

Let G be a graph that meets the intransitive two-agent game graph criteria 1-5.1

Let R′1 and R′2 be the reward functions produced by Algorithm 5.1 using G.2

For each a1, a2 ∈ A1 ×A2 do3

Set R1(a1, a2)← R′1(a1, a2)/π2(a2).4

Set R2(a1, a2)← R′2(a1, a2)/π1(a1).5

Return R1 and R2.6

Algorithm 5.2: A reward generator for two-agent games with a given fully
mixed Nash equilibrium.

To complete the proof, we must show that the fully mixed policies π1and π2 are best
responses to each other. We prove that π1 is a best response to π2 by showing that π1

satisfies Eq. (5.23) for all actions an ∈ An when n = 1. Because π1 is fully mixed, the
following holds for all of agent 1’s actions:

v1(a1) = ∑
a2∈A2

R1(a1, a2)π2(a2) (5.28)

As mentioned in the proof of Theorem 5.3, for a given a1, we know that R′1(a1, a2) in
Algorithm 5.2 equals 1 for one and only one action inA2. So, for a given a1, this implies
that R1(a1, a2) 6= 0 for one and only one action a∗2 ∈ A2; in fact, R1(a1, a∗2) = 1/π2(a∗2),
where a∗2 depends on a1. For a given a1, all other values of R1(a1, a2) = 0 for a2 6= a∗2 .
Therefore:

v1(a1) = ∑
a2∈A2

R1(a1, a2)π2(a2) = R1(a1, a∗2)π2(a∗2) (5.29)

for all a1 ∈ A1. Because R1(a1, a∗2) = 1/π2(a∗2), we find that v1(a1) = π2(a∗2)/π2(a∗2) =
1 = maxa′1∈A1

v1(a′1) for all a1 ∈ A1. (Because π2 is fully mixed, π2(a2) 6= 0 for all a2.)
Consequently, the fully mixed π1 satisfies Eq. (5.23) and is a best response to the fully
mixed π2. By symmetry, π2 is a best response to π1. Therefore, π1 and π2 comprise
the one and only Nash equilibrium, which is fully mixed.

Theorem 5.4 leads us to the following conclusion about designing two-agent normal
form games:
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Corollary 5.1. If πM is a fully mixed joint policy where πM ∈ B and R0 is the joint reward
function constructed by Algorithm 5.2 with input πM, then R0 is a design compliant reward
function for two-agent games where both agents have the same number of actions.

We can construct two-agent normal form games that satisfy the normal form game
reward design criteria where the agents have a different number of actions by adding
actions to one of the agents, so long as the agents take those actions with zero
probability. However, the normal form game reward design criteria cannot be satisfied
for two-agent games if π ∈ B implies that the supports of the agents’ policies are
unequal. This is because both agents must have supports of equal size in a Nash
equilibrium of a non-degenerate game (von Stengel, 2007, p. 56). The only exception
to this rule would be a degenerate game with a design compliant reward function.
This is possible, but degenerate games have the disadvantage of having an infinite
number of Nash equilibria, which is likely to hinder agent learning because it makes
coordination more difficult. We do not give further consideration to games with
degenerate Nash equilibria.

5.3.3 Generalising to normal form games with arbitrary numbers of agents

We generalise our two-agent results to normal form games with any number of agents.
Our goal is to construct a game with a single Nash equilibrium where the agents take
their actions with probabilities that we specify in advance. First, we generalise our
graph method from Section 5.3.2 to construct multi-agent games where each game
has a single fully mixed Nash equilibrium where each agent plays each action with
equal probability. Then, we discuss how to transform normal form games with such
Nash equilibria into games with the full range of possible unique Nash equilibria.

As we show in Section 5.3.2, we can construct two-agent normal form games with any
fully mixed Nash equilibrium if both agents have support for the same number of
actions. Here we consider the analogous constraint for games with more than two
agents. We can construct a normal form game with some fully mixed joint policy as
the unique Nash equilibrium if and only if the following constraint on the agents’
numbers of actions holds (Kreps, 1981, p. 126):

max
n∈N
{|An|} = |Ak| ≤ 2− |N |+ ∑

m∈N ,m 6=k
|Am| (5.30)

We choose to construct a generalisation of Matching Pennies for more than two agents.
As in Section 5.3.2, we construct a directed graph, G = (V , E), that represents the
ordering of the agents’ preferences. Again, the graph has a vertex for each action of
each agent: V(G) =

⋃
n∈N An. Here, the meaning of an arc is subtly different than in
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Section 5.3.2; an arc in E(G) from an to am means that agent m prefers to switch to
action am immediately after agent n has switched to action an, given whatever actions
the other agents are playing. No agent can be incentivised to change its action twice
in succession. Therefore, instead of being bipartite, as in the two-agent case, the graph
must be |N |-partite, such that it has no arcs from any element in An back to another
element in An for all n ∈ N . As in Section 5.3.2, each vertex must have a single
arc to it and a single arc from it and the graph must have a Hamiltonian cycle. In
summary, a graph can be transformed into a multi-agent intransitive game if it meets
the following ‘multi-agent action preference graph criteria:’

1. The agents’ numbers of actions must satisfy Eq. (5.30).

2. The graph has a vertex for each action of each agent.

3. Each vertex has a single arc to it and a single arc from it.

4. There are no arcs leading from one of agent n’s actions to another of agent n’s
actions, for all n ∈ N .

5. The graph has a Hamiltonian cycle.

6. The graph must satisfy the ‘action path dependency criterion:’ Suppose we have
a (u, v)-path such that u, v ∈ V(G)× V(G) and u 6= v. Let Pn be the subset
of all vertices on the path between u and v (but not including v) such that
every element in Pn is also an element in An. A graph satisfies the action path
dependency criterion if, for all such paths, there exists some n ∈ N such that:

0 < |Pn| < |An| (5.31)

Note that all the conditions except 1 and 6 are exactly the same as in the two-agent
case presented in Section 5.3.2. Algorithm A.2 in Appendix A generates one possible
graph for any number of agents with any number of actions, provided that the number
of actions for each agent satisfies Eq. (5.30).

Given a graph that satisfies the multi-agent action preference graph criteria, we can
use Algorithm 5.3 to construct a normal form game with a unique Nash equilibrium
where each agent plays its actions with equal probability. Generating intransitive
games for an arbitrary number of agents is more complex than generating two-agent
intransitive games, therefore Algorithm 5.3 is more complex than Algorithm 5.1. While
the joint reward function for a two-agent game is two-dimensional, a general joint
reward function is |N |-dimensional. The graph concisely represents a closed path
through the |N |-dimensional joint reward function space. The action path dependency
criterion prevents this path from visiting the same point twice. Each point on the path
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Input : A directed graph, G, that satisfies the multi-agent action preference
graph criteria.

Output: A joint reward function, R, for an intransitive multi-agent normal
form game.

Set Rn(a)← 0 for all joint actions a ∈ A and all n ∈ N .1

Let a be an arbitrary joint action.2

// First, visit each vertex to initialise a with a meaningful value.3

Choose an arbitrary starting vertex an in V(G).4

While not all vertices have been visited do5

Set a← (an, a−n).6

Advance to the next vertex: an ← the direct successor of an.7

// Second, visit each vertex again to set the appropriate values of R.8

While not all vertices have been visited do9

Set a← (an, a−n).10

Set Rn(a)← 1.11

Advance to the next vertex: an ← the direct successor of an.12

Return R.13

Algorithm 5.3: A method for converting a directed partite graph that satisfies
the multi-agent action preference graph criteria into an intransitive multi-agent
game.

has some joint action and a reward value of one for some agent, and the path leaves
each point by making a rotation to an orthogonal direction.

Algorithm 5.3 starts by setting all values of Rn(a) to zero (line 1) and choosing an
arbitrary starting joint action, a. Lines 5–7 serve to initialise a with a meaningful
starting value by visiting each vertex of G and updating a with the changes that each
vertex implies; after visiting each vertex, a is guaranteed to have a valid value. In
lines 9–12, each vertex on the graph is visited again, this time setting the appropriate
reward function value to 1 while also keeping track of the current value of a.

Notice that a complete representation of R requires |N |∏n∈N |An| real numbers, but
that Algorithm 5.3 generates a reward function that we can represent with ∑n∈N |An|
non-zero values. This sparse reward function representation is beneficial. We can
efficiently store reward functions for large games. In general, computation of the
Nash equilibria of a normal form game is PPAD-complete (Chen and Deng, 2006), but
we may be able to exploit our prior knowledge of the sparse representation to more
efficiently compute the Nash equilibria of these games. For the two-agent case, the
Nash equilibria of games generated with Algorithm 5.3 can be computed in linear
time (Codenotti et al., 2006).
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Before we show that Algorithm 5.3 successfully constructs a normal form game with
the specified Nash equilibrium, we demonstrate the importance of the action path
dependency criterion.

Lemma 5.2. If G satisfies all the multi-agent action preference graph criteria, then no value
of a occurs more than once in the while loop in Algorithm 5.3 on lines 9–12.

Proof. In order for a value of a to occur twice in the while loop in Algorithm 5.3 on
lines 9–12, some set of agents must change their actions, then change their actions
back to their original values, while the remainder of the agents leave their actions
unchanged.

Because of the multi-agent action preference graph criterion number 4, we can be sure
that no agent changes its action on one vertex and then reverts that change on the
next vertex. Furthermore, because each agent has a single vertex for each of its actions
(criteria 2), the only way for an agent to repeat one of its actions is for all of its actions
to be on the same path. So for a joint action to repeat in the loop, there must be a path
that meets the following conditions:

• At least one agent has all of its actions on the path.

• All agents that do not have all their actions on the path have no actions on the
path.

• The path does not include all vertices in the graph.

However, no such path can exist because we consider that the graph satisfies the action
path dependency criterion, so all paths that do not include all the vertices have some
agent which has some number |Pn| of actions on the path such that 0 < |Pn| < |An|.
Because no path can result in all agents with actions on that path switching all their
actions, no joint action can repeat in the while loop on lines 9–12.

Theorem 5.5. A normal form game constructed with Algorithm 5.3, Γ, has a unique, fully
mixed Nash equilibrium where the agents play each action with equal probability.

Proof. First we show that Γ has a fully mixed Nash equilibrium, then we show that
the equilibrium is unique.

Let π be the joint policy where the agents play each action with equal probability and
let R be the reward function produced by Algorithm 5.3. We now show that all games
constructed with Algorithm 5.3 have π as a Nash equilibrium. In order for π to be a
Nash equilibrium, the best response condition must hold for all agents. Because π is
fully mixed, the following holds for all of agent n’s actions:

vn(an) = ∑
a−n∈A−n

Rn(an, a−n) ∏
m∈N ,m 6=n

πm(am) = max
a′n∈An

vn(a′n) (5.32)



5.3 DESIGNING REWARDS FOR NORMAL FORM GAMES 104

for all n ∈ N and where am is agent m’s action in a−n. Because π is fully mixed and uni-
formly distributed, we know that πm(am) = 1/|Am| and therefore ∏m∈N ,m 6=n πm(am) =
1/ ∏m∈N ,m 6=n |Am|.

By Lemma 5.2, each value of a occurs exactly once in the loop on lines 9–12. Therefore,
for each an there exists some a∗−n such that Rn(an, a∗−n) equals 1 and Rn(an, a−n) equals
zero for all other a−n. Consequently, ∑a−n∈A−n

Rn(an, a−n) = 1 for all an and all a−n,
and Eq. (5.32) holds for all an and all n ∈ N with:

vn(an) =
1

∏m∈N ,m 6=n |Am|
= max

a′n∈An
vn(a′n) (5.33)

Therefore, π, the joint policy where each agent plays each action with equal probability,
is a fully mixed Nash equilibrium of Γ.

‘Let x∗ be a completely mixed strategy N-tuple. A necessary and sufficient condi-
tion for the existence of a finite non-cooperative game Γ that has x∗ as its unique
equilibrium point is that [Eq. (5.30) holds]’ (Kreps, 1981, p. 126). We know that the
game Γ has a unique equilibrium provided that Γ has a fully mixed Nash equilibrium.
Because we have shown that Γ has a fully mixed Nash equilibrium, π, we know that
π is the unique Nash equilibrium of Γ.

Our method for constructing reward functions for stochastic games with arbitrary
numbers of agents has two parts. The first part (presented above) constructs games
with unique fully mixed Nash equilibria and the second part extends the games
constructed by the first part by adding all actions that an agent takes with zero
probability and all agents that take an action with probability one to the desired
equilibrium. Here we consider that second part. Let πn denote the size of the support
of πn, i.e. πn is the number of actions in πn such that πn(an) > 0. We can construct a
design compliant reward for a normal form game such that the game has a unique
Nash equilibrium if the following holds for all agents n ∈ N :

max
n∈N
{πn} = πk ≤ 2− |N |+ ∑

m∈N ,m 6=k
πm (5.34)

That is, the portion of the joint policy that has non-zero action probabilities must
satisfy Eq. (5.30). If a joint policy satisfies Eq. (5.34), then we can use Algorithm 5.4 to
construct a normal form game where that joint policy is the unique Nash equilibrium.

Theorem 5.6. A normal form game constructed with Algorithm 5.4 has a unique Nash
equilibrium where the agents play each action with the probabilities specified by π and the
expected reward for each agent is one.
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Input : The probabilities that each agent will take each action at the Nash
equilibrium, π, where πn(an) is the probability that agent n takes
action an, for each agent n ∈ N and each action an ∈ An. We assume
that Eq. (5.34) is satisfied.

Output: A joint reward function for all agents, R, that defines a game with one
Nash equilibrium where agents play actions at the given probabilities.

//Reward agents as in Eq. (5.21) if they follow an action with probability 1.1

Set Rn(a)← 0 for all n ∈ N and all a ∈ A.2

LetM← ∅.3

Let A′ ← ∅.4

For each n ∈ N do5

If there exists some an such that πn(an) = 1 then6

Set Rn(an, a−n)← 1 for all a−n.7

Else8

M←M∪{n}.9

A′ ← A′ ∪ {the set of actions in An such that πn(an) ∈ (0, 1)}.10

//We now have a reduced game Γ′ with agentsM and actions A′.11

//Create a fully mixed Nash equilibrium for Γ′.12

Let G be a graph with vertex set A′ that meets the multi-agent action13

preference graph criteria.
Let R′ be the joint reward function produced by Algorithm 5.3 using G.14

For each a ∈ A do15

Set q← ∏m∈M πm(am) where the values of am come from the joint action a.16

For each m ∈ M do17

Set Rm(a)← πm(am)R′m(aM)/q where am is agent m’s action in joint18

action a and where aM is the vector of actions in a for the agents inM.
Return R.19

Algorithm 5.4: A generator for multi-agent normal form games with a given
Nash equilibrium.

Proof. Algorithm 5.4 splits the game into two parts: a deterministic part where πn(an)
is either 0 or 1, and stochastic part where πn(an) lies in the open set (0, 1). On
lines 1–10, the algorithm identifies the stochastic part of the game and fills in the
reward function for the deterministic part.

Each agent in the deterministic part is unaffected by the actions of the other agents
and can gain an expected payoff of 1. If the game is entirely deterministic, then
M = ∅ and Algorithm 5.4 reduces to an implementation of Eq. (5.21) and the veracity
of this theorem follows from Theorem 5.2. The remainder of this proof considers the
case whereM 6= ∅.

The agents not in M are dummy agents; their actions do not affect the outcome
for other agents. Furthermore, for the agents inM, their reward function is always
smaller for actions not in A′ than it is for actions in A′. Therefore, the agents inM
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will only play actions in A′ and a Nash equilibrium can only include actions in A′

for the agents inM. To complete this proof, we must show that the reduced game
Γ′ = (M,A′) has a unique fully mixed Nash equilibrium that corresponds to the
stochastic part of the game.

The remainder of this proof is similar to the proof of Theorem 5.4, with details changed
to reflect the generalisation to an arbitrary number of agents. If the reduced game
Γ′ constructed with Algorithm 5.4 has a fully mixed Nash equilibrium, then that
equilibrium is unique. This is because the reward function of Γ′ in Algorithm 5.4 is
only a modification of the reward functions produced by Algorithm 5.3, so we can
apply the reasoning given in the proof of Theorem 5.5.

Let πM be the stochastic part of π. Because πM excludes any deterministic actions,
we know that πM is a fully mixed joint policy. To complete the proof, we must
show that πM comprises agent probability distributions πm for m ∈ M that are best
responses to the other agents’ policies. We prove that πm is a best response to the
other agents’ policies in πM by showing that πm satisfies Eq. (5.23). Because πM is
fully mixed, the following holds for all of agent m’s actions in A′m:

vm(am) = ∑
a−m∈A−m

Rm(am, a−m) ∏
n∈M,n 6=m

πn(an) (5.35)

for all m ∈ M.

As shown in the proof of Theorem 5.3, for each am there exists some a∗−m such that
R′m(am, a∗−m) in Algorithm 5.4 equals 1, while R′m(am, a−m) equals zero for all other
a−m. Consequently:

∑
a−m∈A−m

Rm(am, a−m) =
1

∏n∈M,n 6=m πn(an)
(5.36)

for all am and all a−m, and where an is agent n’s action in a−m. Therefore, Eq. (5.35)
holds for all am and all m ∈ M with:

vm(am) = 1 = max
a′m∈Am

vm(a′m) (5.37)

Therefore, the fully mixed joint action distribution πM is the one and only Nash
equilibrium of the reduced Γ′ and each agent expects to earn a reward of one. Conse-
quently, both the deterministic and the stochastic parts of the game form a unique
Nash equilibrium where the agents follow their policies in the joint policy π and each
agent earns an expected reward of one.

Theorem 5.6 leads us to the following conclusion about designing multi-agent normal
form games:
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Corollary 5.2. If π0 is a joint policy that satisfies Eq. (5.34), where π0 is in B, the set of
desired joint policies, and R0 is the joint reward function constructed by Algorithm 5.4 with
input π0, then R0 is a design compliant reward function.

5.4 Designing rewards for general stochastic games

We now combine our methods for designing rewards for Markov decision processes
and normal form games to form a method for designing rewards for stochastic games.
A stochastic game is defined as a tuple G = (N ,S ,A, T, R) where S is a set of states,
A is a joint action space, T : S × A × S → [0, 1] is a state transition function and
R : S ×A× S → R|N | is a joint reward function. In addition, we consider that An is
the action space of agent n such that A = ×n∈N An, and that Rn : S ×A× S → R

is the reward function for agent n. The goal of each agent is to control its actions
so as to maximise its payoff. Each agent maintains a policy, πn, that is a mapping
between states and probability distributions over actions, that is, πn(s, an) ∈ [0, 1]
and ∑an∈An

πn(s, an) = 1, for all s ∈ S . As system designers, our goal is to design
a reward function that results in a stochastic game where all Nash equilibria are
desirable behaviours. For stochastic games, we quantify the concept of a ‘behaviour’
as a particular stationary stochastic joint policy, π = (πn for all n ∈ N ), where πn is
the policy of agent n.

5.4.1 Definitions

If we fix the agents’ joint policy, then a stochastic game collapses to a Markov chain.
Before we begin our discussion of designing rewards for stochastic games, we require
some definitions that relate to the dynamics of a stochastic game when we fix the
agents’ joint policy at π:

• The state transition probability from state s to state s′ is represented as p(s′|s, π)
and is calculated as:

p(s′|s, π) = ∑
a∈A

T(s′|s, a) ∏
n∈N

πn(s, an) (5.38)

such that an is agent n’s component of the joint action vector a.

• The state transition probability matrix P(π) has entries:

[P(π)]ij = p(sj|si, π) (5.39)
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• Agent n’s expected immediate reward for each state is described by the vector:

rn(π) =

(
∑

a∈A
∑

s′∈S
T(s′|s, a)Rn(s, a, s′) ∏

m∈N
πm(s, am) for s ∈ S

)T

(5.40)

such that am is agent m’s component of the joint action vector a. If the joint
reward function has no dependency on the next state, s′, then the expected
immediate reward vector can be simplified to:

rn(π) =

(
∑

a∈A
Rn(s, a) ∏

m∈N
πm(s, am) for s ∈ S

)T

(5.41)

• The value of state s to agent n is represented as vn(s, π) and is calculated as:

vn(s, π) = (1− γ)
∞

∑
t=0

γtEs,π [Rn(t)] (5.42)

where, in an abuse of notation, Es,π [Rn(t)] is the expected reward to agent n at
time t, starting from state s.

• The state values for an agent are described by the value vector:

vn(π) = (vn(s, π) for s ∈ S)T (5.43)

Given the definitions above, we can calculate the γ-discounted value vector for each
agent from the expected immediate reward vector and the state transition matrix:

vn(π) = (1− γ)
∞

∑
t=0

γtPt(π)rn(π) (5.44)

= (1− γ) [I− γP(π)]−1 rn(π) (5.45)

Let π−n represent an almost-joint policy that includes policies for all agents except
agent n, and let π = (πn, π−n). A Nash equilibrium in a stochastic game is defined
as a joint policy, π∗, such that no agent can increase its value vector by unilaterally
changing its policy, i.e. the following holds element-wise:

vn[(π∗n, π∗−n)] ≥ vn[(πn, π∗−n)] (5.46)

for all πn and all n ∈ N . See also Definition 4.6.1 on p. 217 of Filar and Vrieze (1997).
We can now formally define the reward design for stochastic games:

Definition 5.3. Suppose we have a stochastic game without a reward function, G−R =
(N ,S ,A, T), and a set of desired behaviours, B. A reward function R† is design compliant
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if and only if all stationary Nash equilibria of the stochastic game (G−R, R†) are in the set of
desired behaviours.

5.4.2 Rewarding agents for following a successful joint policy is a design
compliant reward function

We can generate rewards for stochastic games by examining the normal form game at
each state. By constructing a design compliant reward function for the normal form
game at each state, and by setting the expected payoffs of each agent to one for each
state, we can create a design compliant joint reward function for a stochastic game.

Theorem 5.7. Let G−R be a stochastic game without a reward function and let π0 ∈ B be a
desired joint policy such that Eq. (5.34) is satisfied when π(s) replaces π, for all s ∈ S . Let
R0 be a joint reward function with no dependency on the next state such that R0

n(s, a, s′) =
R0

n(s, a) for all n ∈ N . If we set the values of R0 as the output of Algorithm 5.4 with input
π(s) for each state, then R0 is a design compliant reward function.

Proof. We can be sure that at least one Nash equilibrium exists, since:

In a general-sum, discounted stochastic game Γβ, there exists a Nash
equilibrium in stationary strategies. (Filar and Vrieze, 1997, Theorem 3.8.1,
p. 130)

First, we show that π0 is a Nash equilibrium of G = (G−R, R0), then we show that π0

is the only Nash equilibrium of G in the set of stationary strategies.

By Theorem 5.6, the reward functions produced by Algorithm 5.3 result in normal
form games with a unique Nash equilibrium at the desired joint policy. We can infer
the Nash equilibria of a stochastic game from the state transition function and the
Nash equilibria of the agents’ reward functions at each state. By Theorem 4.6.5 on
p. 220 of Filar and Vrieze (1997), the joint policy π0 is a Nash equilibrium of G if the
agents’ policies at that state constitute a Nash equilibrium of a normal form game
with joint reward function RNFG(s) for each state s ∈ S . The reward functions of these
normal form games, RNFG(s), can be calculated as:

RNFG(s)
n (a) = (1− γ)R0

n(s, a) + γ ∑
s′∈S

p(s′|s, π0)vn(s′, π0) (5.47)

for each state s ∈ S , each agent n ∈ N and each joint action a ∈ A. (Filar and Vrieze
state this theorem for two-agent games, but it can be extended to stochastic games
with an arbitrary number of agents at the expense of more complex notation.)

To simplify Eq. (5.47), we apply similar reasoning as in the proof of Theorem 5.1 for
Markov decision processes where we showed that the value at each state is equal to
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a constant. Then, we show that RNFG(s)
n (a) is some affine transformation of R0

n(s, a).
By Theorem 5.6, the expected reward for each agent is one, if all agents take actions
according to the Nash equilibrium, that is, rn(π0) = 1|S| for all n ∈ N . Therefore, by
Eq. (5.45) and exactly the same reasoning as in the proof of Theorem 5.1, we know that
vn(π0) = 1|S| for all n ∈ N . Because ∑s′∈S p(s′|s, π0)vn(s′, π0) = 1, we can rewrite
Eq. (5.47) as:

RNFG(s)
n (a) = (1− γ)Rn(s, a) + γ (5.48)

If γ is a constant in [0, 1), then we know that RNFG(s)
n (a) differs from Rn(s, a) only

by an affine transformation. Because Nash equilibria are invariant under affine
transformations, this demonstrates that there exists a Nash equilibrium of G where
each agent takes actions according to π0.

To complete this proof, we show that π0 is the only Nash equilibrium of G. Suppose
that G has another Nash equilibrium π× 6= π0. If π× is a Nash equilibrium, then
Eq. (5.46) must be satisfied when we substitute π× in place of π∗. However, if
π× 6= π0, then there must be at least one state, s×, where at least one agent n can
increase its expected payoff by changing its policy to π0. If there exists some an such
that π0

n(s×, an) = 1, then agent n can only decrease its expected payoff by deviating
from π0. Alternatively, if no such an exists, then deviating from π0 implies that the
other agents can exploit agent n, causing agent n to receive an expected payoff of
less than one. Because agent n cannot increase its expected payoff in some state and
hence its value in that state, Eq. (5.46) cannot be satisfied when we substitute any
value for π∗ except π0. Therefore, π0 is the only Nash equilibrium of G in the set of
stationary strategies. Because all stationary Nash equilibria of G are in B, the set of
desired behaviours, R0 is a design compliant reward function.

Because R0 in Theorem 5.7 does not depend on the next state and results in π0 as the
unique Nash equilibrium for all discount rates γ ∈ [0, 1), R0 satisfies the stochastic
game analogues of the easy-learning properties given in Section 5.2.1. Therefore, we
can encode desirable stationary stochastic joint policies as the unique Nash equilibrium
of a stochastic game. This reduces the problem of choosing agent reward functions in
stochastic games to finding a desirable joint behaviour.

5.4.3 An example

Here we demonstrate our method for designing rewards for stochastic games with
an example. Suppose we have a multi-agent system with three agents, N = {1, 2, 3},
where the agents play a variation of the medium access games described in Chapter 4.
We model this multi-agent system as a stochastic game and provide an example
reward function designed as in Theorem 5.7 that incentivises turn-taking. Unlike the
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Table 5.2: One possible joint policy for a three-agent multi-agent system that
results in high values of the turn-taking metric ττ. The table shows the probability
of the agent taking action bn. Because each agent has two possible actions, the
probability of action an is πn(s, an) = 1− πn(s, bn).

Desired action probabilities
State, s π1(s, b1) π2(s, b2) π3(s, b3)
〈a1, a2, a3〉 0.5 0.5 0.5
〈a1, a2, b3〉 0 1 0
〈a1, b2, a3〉 1 0 0
〈a1, b2, b3〉 0.5 0.5 0.5
〈b1, a2, a3〉 0 0 1
〈b1, a2, b3〉 0.5 0.5 0.5
〈b1, b2, a3〉 0.5 0.5 0.5
〈b1, b2, b3〉 0.5 0.5 0.5

medium access games of Chapter 4, in this situation we consider the state to be fully
observable by the agents, in keeping with our formulation of a stochastic game.

On an indefinite number of discrete time steps, each agent can take one of two actions:
An = {an, bn} for all n ∈ N , where action bn means that agent n is transmitting on a
shared communications channel and action an means that the agent is not transmitting.
We define the system state as the joint action of all agents on the previous time step;
therefore S = A = {a1, b1} × {a2, b2} × {a3, b3} and the state transition probabilities
are:

T(s, a, s′) =

{
1 if s′ = a
0 otherwise

(5.49)

for all s, s′ ∈ S × S and all a ∈ A. Between, N , S , A and T, we have a stochastic
game without a reward function, G−R. Using Theorem 5.7, we can construct a reward
function that results in any joint policy as the unique Nash equilibrium.

Suppose that we want the agents to take turns transmitting on the shared communica-
tions channel, that is, when we measure the mean turn-taking of the agents’ actions
using the turn-taking metric described in Chapter 3 and a resolution of r = 3, we
should get a quantity of turn-taking that is greater than the expected turn-taking of
a group of three random agents. So far, in this chapter, we assume that we know
the set of desired behaviours. Therefore we consider that the desired behaviour is as
described in Table 5.2, which shows the probability that agent n will take action bn in
state s, πn(s, bn), for all states and all three agents. The joint policy shown in Table 5.2
results in limt→∞ ττ(t, 3) = 1, for all starting states. We discuss constructing desirable
joint behaviours from metrics or other non-explicit representations in Section 5.5.

In order to incentivise turn-taking with a unique Nash equilibrium of the stochastic
game, we construct a reward function according to the scheme in Theorem 5.7 when
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Table 5.3: Reward function values that result in turn-taking, written as
Ra(s, a), Rb(s, a), Rc(s, a).

Joint action, a
State, s 〈a1, a2, a3〉 〈a1, a2, b3〉 〈a1, b2, a3〉 〈a1, b2, b3〉 〈b1, a2, a3〉 〈b1, a2, b3〉 〈b1, b2, a3〉 〈b1, b2, b3〉
〈a1, a2, a3〉 0, 4, 0 0, 0, 4 4, 0, 0 0, 0, 0 0, 0, 0 4, 0, 0 0, 0, 4 0, 4, 0
〈a1, a2, b3〉 1, 0, 1 1, 0, 0 1, 1, 1 1, 1, 0 0, 0, 1 0, 0, 0 0, 1, 1 0, 1, 0
〈a1, b2, a3〉 0, 1, 1 0, 1, 0 0, 0, 1 0, 0, 0 1, 1, 1 1, 1, 0 1, 0, 1 1, 0, 0
〈a1, b2, b3〉 0, 4, 0 0, 0, 4 4, 0, 0 0, 0, 0 0, 0, 0 4, 0, 0 0, 0, 4 0, 4, 0
〈b1, a2, a3〉 1, 1, 0 1, 1, 1 1, 0, 0 1, 0, 1 0, 1, 0 0, 1, 1 0, 0, 0 0, 0, 1
〈b1, a2, b3〉 0, 4, 0 0, 0, 4 4, 0, 0 0, 0, 0 0, 0, 0 4, 0, 0 0, 0, 4 0, 4, 0
〈b1, b2, a3〉 0, 4, 0 0, 0, 4 4, 0, 0 0, 0, 0 0, 0, 0 4, 0, 0 0, 0, 4 0, 4, 0
〈b1, b2, b3〉 0, 4, 0 0, 0, 4 4, 0, 0 0, 0, 0 0, 0, 0 4, 0, 0 0, 0, 4 0, 4, 0

π0 is the desired joint policy in Table 5.2. Since Table 5.2 has four unique rows, we run
Algorithm 5.4 with four different inputs. Table 5.3 shows the output of Algorithm 5.4
for each state. If we set R0 to the entries of Table 5.3, then R0 is a design compliant
reward function for the reward-less stochastic game G−R, by Theorem 5.7.

If the agents play their actions according to Table 5.2 and they are rewarded according
to Table 5.3, then each agent earns an expected payoff of 1 for each state (see The-
orem 5.6). For the states 〈a1, a2, b3〉, 〈a1, b2, a3〉 and 〈b1, a2, a3〉, notice that Table 5.2
specifies that the agents should choose their actions deterministically and Table 5.3
shows that each agent can earn a reward of 1 by choosing its correct action, regardless
of the other agents’ actions. For the other states, Table 5.2 specifies that the agents
should randomise equally between their two actions, so each of the eight joint actions
occur with probability 1/8. Therefore, the sum of each agent’s reward function in
Table 5.3 must be 8 for each of these states in order for each agent to earn an expected
reward of 1. Indeed, each agent can earn a reward of 4 for two different outcomes in
states 〈a1, a2, a3〉, 〈a1, b2, b3〉, 〈b1, a2, b3〉, 〈b1, b2, a3〉 and 〈b1, b2, b3〉. However, because
the normal form games at these states are intransitive, no joint action can give a
non-zero reward to all agents.

We simulated groups of three agents engaged in this medium access game-like
stochastic game. We did two simulations: one with ideal agents that follow the
stochastic stationary policies shown in Table 5.2 and one with Q-learning agents
(Watkins, 1989) that follow an ε-greedy exploration policy (Sutton and Barto, 1998). We
configured the Q-learning agents with the parameters shown in Table 5.4. Chapter 2
describes Q-learning and ε-greedy exploration policies in detail.

Table 5.5 shows an example sequence of actions for three ideal agents. The agents are
ideal in the sense that their policies are determined by the Nash equilibrium and we
show their performance so that the we can compare them to Q-learning agents. The
ideal agents move randomly between states until time step 4, when they settle into
perfect turn-taking for all later time steps. Fig. 5.4 shows the mean turn-taking at a
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Table 5.4: Q-learning agent parameter values.

Parameter name Domain Value
Learning rate [0, 1] 0.2

Exploration amount, ε [0, 1] 0.01
Discount factor, γ [0, 1) 0.9

Initial Q-table value R 100

Table 5.5: An example sequence of actions for three ideal agents.

t State, s Joint action, a Rewards, Ra, Rb, Rc ττ(t, 3)
0 〈a1, a2, a3〉 〈a1, a2, a3〉 0, 4, 0 0.0
1 〈a1, a2, a3〉 〈b1, b2, a3〉 0, 0, 4 0.0
2 〈b1, b2, a3〉 〈b1, b2, a3〉 0, 0, 4 0.0
3 〈b1, b2, a3〉 〈b1, a2, b3〉 4, 0, 0 0.0
4 〈b1, a2, b3〉 〈b1, a2, a3〉 0, 0, 0 1.0
5 〈b1, a2, a3〉 〈a1, a2, b3〉 1, 1, 1 1.0
6 〈a1, a2, b3〉 〈a1, b2, a3〉 1, 1, 1 1.0
7 〈a1, b2, a3〉 〈b1, a2, a3〉 1, 1, 1 1.0

resolution of 3, ττ(t, 3), and the mean reward for 1000 simulation runs of the ideal
agents that play the policy shown in Table 5.2. Notice that the mean reward is close to
1 for the ideal agents, which is what we expect because Theorem 5.6 guarantees that
the mean reward at each state is 1 if the agents play the Nash equilibrium.

Fig. 5.5 shows similar plots for simulations with Q-learning agents. Notice that the
x-axis limit for the time variable is much larger in Fig. 5.5 than in Fig. 5.4; the ideal
agents converge to perfect turn-taking faster than the Q-learning agents, on average.
The mean turn-taking of the Q-learning agents increases as they learn to maximise
their reward functions. As noted in Chapter 4, Q-learning agents are not guaranteed
to converge to the Nash equilibrium in stochastic games (Buşoniu et al., 2008). In
fact, the Q-learning agents have not learned the policy shown in Table 5.2, but they
have learned the deterministic parts in states 〈a1, a2, b3〉, 〈a1, b2, a3〉 and 〈b1, a2, a3〉 that
are necessary to coordinate turn-taking. Even if the Q-learning agents may not have
learned the Nash equilibrium, we can be confident that the Q-learning agents have
indeed learned turn-taking because their mean turn-taking values greatly exceed 0.019,
the expected turn-taking at a resolution of 3 for groups of three random agents. Unlike
the examples in Chapter 3, we are measuring the quantity of turn-taking present at a
resolution equal to the number of agents. This generally implies that the turn-taking
of random agents will be small, as shown in Table 3.3 in Chapter 3 on p. 39.

This example serves to illustrate how our method can work in practice to design
rewards that result in desirable joint sequential behaviours in groups of agents. By
using Theorem 5.7 to construct a reward function that results in turn-taking behaviour
as the unique Nash equilibrium, we can influence the outcome produced by groups



5.4 DESIGNING REWARDS FOR GENERAL STOCHASTIC GAMES 114

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

R
ew

ar
d

0 5 10 15 20
Time, t

0.0

0.2

0.4

0.6

0.8

1.0

ττ
(t
,3

)

Figure 5.4: The reward (top) and turn-taking at a resolution of 3 (bottom) for
groups of three simulated ideal agents playing the policy shown in Table 5.2 that
are rewarded as in Table 5.3. This figure shows mean values for 1000 simulation
runs in black and the mean plus and minus one standard deviation in gray. A
dashed line shows the expected turn-taking at a resolution of 3 for groups of three
random agents, which is 0.019. Note that the x-axis limit for the time variable is
20, much smaller than in Fig. 5.5.
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Figure 5.5: The reward (top) and turn-taking at a resolution of 3 (bottom) for
groups of three simulated Q-learning agents rewarded as in Table 5.3. This figure
shows mean values for 1000 simulation runs in black and the mean plus and
minus one standard deviation in gray. A dashed line shows the expected turn-
taking at a resolution of 3 for groups of three random agents, which is 0.019. Note
that the x-axis limit for the time variable is 20000, much larger than in Fig. 5.4.
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of Q-learning agents, as illustrated in Fig. 5.5. Notice that this example is similar to
the work in Chapter 4; however, one important difference is that the medium access
games in Chapter 4 are partially observable so the method in this chapter, which is
for fully observable stochastic games, does not directly apply. We discuss the general
differences between the methods of this chapter and those of Chapter 4 in Section 5.5.

5.5 Discussion

Our method is one of several different possible ways to design reward functions that
result in games with unique Nash equilibria. While we generalise on the normal
form game of Matching Pennies, we could instead design reward functions based
on rock-paper-scissors. Rock-paper-scissors is a zero-sum game that people play by
simultaneously presenting a hand gesture that symbolises an action. The first three
rows and columns of Table 5.6 show the payoffs of rock-paper-scissors. Rock crushes
scissors, but is covered by paper, while scissors cuts paper, forming an intransitive loop
of preferences. One popular generalisation of rock-paper-scissors to five actions is the
game invented by Sam Kass and Karen Bryla called ‘Rock-paper-scissors-spock-lizard’
(Kass, 2012). Spock (Roddenberry, 1966) dominates rock and scissor but is poisoned
by the lizard and is disproven by paper while the lizard eats paper but is killed by
rock or scissors.

Table 5.6: Generalised rock-paper-scissors with an odd number of actions. The
reward function values are shown in the form of reward for row agent, reward
for column agent.

Column agent
Rock Paper Scissors · · · Spock Lizard

Row agent

Rock 0 , 0 -1, 1 1 , -1 · · · -1, 1 1 , -1
Paper 1 , -1 0 , 0 -1, 1 · · · 1 , -1 -1, 1

Scissors -1, 1 1 , -1 0 , 0 · · · -1, 1 1 , -1
...

...
...

...
. . .

...
...

Spock 1 , -1 -1, 1 1 , -1 · · · 0 , 0 -1, 1
Lizard -1, 1 1 , -1 -1, 1 · · · 1 , -1 0 , 0

We can extend rock-paper-scissors to any odd number of actions with payoffs as
given in Table 5.6 by putting any even number of extra rows and columns in place
of the dots. Each action must defeat half of the total actions, be defeated by the
other half of the actions and tie against itself. Generalised rock-paper-scissors has a
single Nash equilibrium where both agents choose each action with equal probability.
Many different possible reward functions share the same set of Nash equilibria; which
reward functions are most learnable? This is an open question. We have a number of
clues, including the easy-learning properties we introduce here, in addition to some
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previously investigated measures, such as ‘factoredness’ and ‘learnability’ defined by
Agogino and Tumer (2008).

A key assumption of our method is that we know the set of desired system behaviours
and that the desirability of a given behaviour is binary. Sometimes a system designer
will have to construct the set of desired system behaviours from a less explicit
representation of the desired behaviour, perhaps using techniques such as:

• Linear temporal logic (Pnueli, 1977; Kröger and Merz, 2008; Wongpiromsarn
et al., 2012).

• A classifier function for Markov chains where all policies that reduce the Markov
decision process into a Markov chain that exhibits particular properties are in B.

• A continuous-valued results-based metric, such as the turn-taking metric ττ

described by Raffensperger et al. (2012b) and in Chapter 3.

Given a description of the desired behaviour, a system designer would have to
construct the set of desired policies. However, some system behaviours are measured
with real values rather than a binary absence or presence. One approach is to create
a binary abstraction of the real value by finding some satisfactory threshold for the
real value, for example, accepting a behaviour if the quantity of turn-taking measured
by ττ(t, r) is greater than some value. Alternatively, a system designer could find
desirable system behaviours with a black-box optimisation technique such as a genetic
algorithm (Goldberg, 1989).

Our method constructs games where the desired behaviour is a Nash equilibrium.
However, the desired behaviour will only be present in the final system if all the
agents converge to the Nash equilibrium. Not all reinforcement learning algorithms
are guaranteed to converge to a Nash equilibrium, for example, Q-learning with an
ε-greedy exploration policy (Sutton and Barto, 1998) is unable to converge to a mixed
Nash equilibrium. One area of future work is to test the empirical learnability of
reward functions produced with our method.

An important focus of multi-agent reinforcement is to design learning algorithms
that guarantee convergence to a Nash equilibrium under some conditions, such as
self-play (Buşoniu et al., 2008). Some research has be done on the conditions required
for learning agents to converge to a Nash equilibrium (Chen and Gazzale, 2004), while
other research focuses on situations involving people (Aumann and Brandenburger,
1995; Mailath, 1998). A potentially interesting research question is: given a set of
multi-agent reinforcement learning algorithms, how can we predict the distribution
of outcomes without performing a complete simulation? Some work has already
been done examining the dynamics of Q-learning (Tuyls et al., 2006); perhaps a
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similar methodology could be applied to other algorithms, possibly leading to better
algorithms.

In some situations, the system designer is not entirely in control of the agents’ reward
functions. A constraint on one or more of the agents’ reward functions will decrease
the range of possible system behaviours. One area of future work is to investigate
designing rewards for desirable behaviours in the presence of constraints on the
agents’ reward functions. In the limiting case where the agents’ reward functions are
fully specified and may be unknown, a system designer must resort to algorithmic
mechanism design (Conitzer and Sandholm, 2002; Sandholm, 2003). We discuss
mechanism design in more detail in Section 5.6.

In a number of practical situations, each agent can only partially observe the system
state. For example, urban search and rescue teams usually possess a small fraction of
the total state information; consequently robot design and modelling for urban search
and rescue must consider partial state observability (Davids, 2002; Carpin et al., 2007).
In general, the theoretical framework of partially observable stochastic games leads to
more accurate models than would be found in the set of fully observable stochastic
games. However, optimal algorithms for partially observable stochastic games are
computationally intractable in general (Bernstein et al., 2002). In Chapter 4 and in
the published article by Raffensperger et al. (2012a), we discuss designing rewards
conducive for agents playing medium access games, which are partially observable
games. In an extensive search of the reward function space, the best predictor for
the desired behaviour was the Nash equilibrium of the analogous fully observable
game. Designing learnable rewards for partially observable games is a future research
area. As suggested by our work in Chapter 4, it may be possible to simply ignore
partial state observability in some cases. Agents may be able to converge to a Nash
equilibrium without fully observing the state. A productive area of research may be
to systematically investigate the consequences of ignoring partial state observability
when designing multi-agent reward functions.

In Chapter 4 and in the article by Raffensperger et al. (2012a), we outline a methodology
for designing multi-agent rewards. The method here builds on that methodology,
but there are some differences. In Chapter 4, we used Q-learning with an ε-greedy
exploration policy and we explicitly limited the range of possible joint agent policies to
a finite set. We used the turn-taking metric ττ (Raffensperger et al., 2012b) to identify
the set of desirable policies in an exhaustive search. We used Markov chain techniques
to calculate the agents’ limit average rewards for all possible stationary policies, given
that the agents’ used ε-greedy exploration policies. At this point, our method for
designing rewards for stochastic games differs, because we use the γ-discounted
valuation in this chapter, rather than the limit average valuation. The limit average
valuation is similar to the γ-discounted valuation when γ approaches 1 (Filar and
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Vrieze, 1997, See Theorem 4.3.18 on p. 195) and the choice in Chapter 4 is empirically
justified by the results in that chapter. However, optimal stationary strategies do not
always exist when we use limit average valuation for stochastic games, for example,
see the stochastic game called ‘The Big Match’ (Gillette, 1957; Blackwell and Ferguson,
1968). Consequently, we have chosen to base our general method on the γ-discounted
valuation because it always lets us find optimal strategies in the set of stationary
policies.

An important part of the method in Chapter 4 is to account for the effects of the agents’
exploration policies when computing the agents’ valuations of different policies.
We could generalise our reward design method to explicitly cater for the agents’
exploration policies. For example, we could modify our method to suit Markov
decision processes where the agent follows an ε-greedy policy. An agent that follows
an ε-greedy exploration policy takes its best known action with probability 1− ε and
takes a random action otherwise. To cater for an ε-greedy policy with constant ε,
we could redefine the set of desired behaviours for the reward-less Markov decision
process with a state transition function calculated as:

Tε(s, a, s′) = (1− ε)T(s, a, s′) +
ε

|A| ∑
a′∈A

T(s, a′, s′) (5.50)

for all s, s′ ∈ S × S and all a ∈ A. When we construct the reward function, we must
also consider how the agent’s reward function will be affected:

Rε(s, a) = (1− ε)R(s, a) +
ε

|A| ∑
a′∈A

R(s, a′) (5.51)

We control the reward function R(s, a), but we want to dictate the optimal policy
when the agent is rewarded according to Rε(s, a).

In a similar way, we could modify our reward design method to suit stochastic games
where each agent follows an ε-greedy policy. We would re-write the state transition
function as:

Tε(s, a, s′) = ∑
M∈℘(N )

[(
|N |
|M|

)
(1− ε)|M|ε|N |−|M|

∏m∈M |Am| ∑
aM∈×m∈M Am

T[s, (a−M, aM), s′]

]
(5.52)

for all s, s′ ∈ S × S and all a ∈ A where ℘(N ) = {∅, {n}, {m}, . . . ,N} is the power
set of N , aM is a vector of agent actions for all agents in M and a−M is a vector
of agent actions in a for all agents not in M. The agents’ exploratory actions are
independent, so the total number of exploratory actions has a binomial distribution. In
essence, Eq. (5.52) reweights the state transition function by examining each possible
combination of agents that could be making exploratory moves on each state transition
and weighting each combination of exploratory moves with a probability taken from
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Figure 5.6: A Mount-Reiter diagram illustrates the processes of mechanism design
(Mount and Reiter, 1974).

a binomial distribution. When we design a reward function for a stochastic game
played by agents with ε-greedy policies, we can control R(s, a) but the agents learn
according to a modified reward function:

Rε(s, a) = ∑
M∈℘(N )

[(
|N |
|M|

)
(1− ε)|M|ε|N |−|M|

∏m∈M |Am| ∑
aM∈×m∈M Am

R[s, (a−M, aM)]

]
(5.53)

In principle, it is not more complicated if each agent has different value of ε, but the
equations become unwieldy. We leave the derivation of reward design methods that
account for the agents’ exploratory moves to future work.

Our method for designing rewards for stochastic games is an important step in fully
generalising the methodology given in Chapter 4, but further research is required for
a complete methodology for designing multi-agent rewards. In particular, a better
method for designing multi-agent rewards would account for partial state observability
and agent exploration. Such a reward design method should be married to systematic
techniques for measuring and specifying desirable multi-agent behaviours, a generic
method for designing agent states and actions, and a meta-learning algorithm to select
agent learning algorithms. Furthermore, despite the theoretical guarantees given here,
empirical verification of our reward design method is essential.

5.6 Related work

‘Mechanism design’ is the field in game theory that was the subject of the 2007 Nobel
prize in economics awarded to Leonid Hurwicz, Eric Maskin and Roger Myerson.
Mechanism design is the study of constructing games that result in some desirable
outcome, even when the agents act selfishly. Mechanism design is similar to our
methods for designing agent reward functions, but starts from different assumptions.
Unlike mechanism design, our methods assume that the agents have no intrinsic
preferences. The process of mechanism design is illustrated by the Mount-Reiter
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diagram (Mount and Reiter, 1974) in Fig. 5.6. Each agent has a particular ‘type’ that
represents the agent’s utility function, which may be private to the agent. Each agent
takes actions called ‘messages,’ these may be bids in an auction, for example. The
‘solution concept’ is a way of determining the expected outcome that results from
competition among the agents; sometimes this is a form of Nash equilibrium, but
other solution concepts can be used. The mechanism designer wants to enforce a
particular class of desirable joint behaviours, for example, the designer may want to
maximise the sum of the agents’ utilities (the social welfare). The mechanism designer
constructs an outcome function that assigns outcomes based on the agents’ messages
such that the Nash equilibrium (or other solution concept) of the game results in
desirable agent behaviours (Maskin, 1985; Palfrey, 2002).

One important result in mechanism design is the ‘revelation principle:’ in general,
we can design mechanisms where the agents’ best policies are to report their type
truthfully (Mas-Colell et al., 1995). This implies that the agents cannot manipulate
the mechanism by sending a message that lies about their type. The Vickrey-Clarke-
Groves auction is an important mechanism that maximises social welfare by motivating
agents to be truthful and has applications, for example, in public choice problems and
single-good auctions (Vickrey, 1961; Clarke, 1971; Groves, 1973). For each agent, the
Vickrey-Clarke-Groves mechanism re-aligns the agent’s value of each outcome with
the social welfare in that outcome by penalising agents for their negative effect on the
other agents’ values. Mechanism design can be automatically achieved in a wide range
of application areas (Conitzer and Sandholm, 2002; Sandholm, 2003) and algorithms
can be implemented with mechanism design principles (Nisan and Ronen, 1999). Our
reward design method is most closely related to automated mechanism design by a
self-interested designer that desires a particular outcome or distribution over outcomes.
However, rather than being indifferent to the agents’ preferences, we consider that the
agents have no prior preferences and that we dictate the agent’s preferences entirely.
Our method is applicable to areas like designing teams of autonomous robots where a
special case of automated mechanism design could be applied, but perhaps at a high
computational cost (Conitzer and Sandholm, 2002).

Our method for constructing two-agent games with unique arbitrary Nash equilibria
is to perturb a generalisation of Matching Pennies and subsequently add whatever
dominated actions are required. Some extensions of Matching Pennies are discussed
by von Neumann and Morgenstern, but only for two-agent games with two or three
actions per agent (von Neumann and Morgenstern, 1944, §18.4-18.5). Kreps gave
necessary and sufficient conditions for constructing normal form games with unique
Nash equilibria for pairs of agents (Kreps, 1974) and arbitrary numbers of agents
(Kreps, 1981), but Kreps did not give any methods for constructing such games.
Quintas (1988) describes how to construct a two-agent game with a single arbitrary
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Nash equilibrium using the extreme action probability points characterised by Marchi
and Quintas (1987) and carefully chosen bijective functions to control the agents’
action preferences. Quintas’s action preference functions are analogous to our agent
action preference graphs. Consequently, our graph method in Section 5.3.2 describes
the set of functions that make Quintas’s method work. Quintas suggests that his
results can be generalised to games with more than two agents, but gives no explicit
method. We go beyond Quintas’s results for two-agent games by constructing reward
functions that result in arbitrary unique Nash equilibria in games with an arbitrary
number of agents and to stochastic games.

Wolpert et al. (1999) demonstrate the COllective INtelligence (COIN) method of
designing agents’ reward functions in multi-agent reinforcement learning systems.
The COIN method is to design local rewards for each agent based on the ‘Wonderful
Life’ utility which tries to account for the interactions between agents and requires
minimal communication between agents. The Wonderful Life utility is named after the
1946 movie directed by Frank Capra where James Stewart plays the protagonist who is
showed what his town would be like if he had never lived (Capra, 1946). In a similar
way, the Wonderful Life utility shapes an agent’s reward function based on what the
group of agents would achieve without the influence of that agent; in this way the
Wonderful Life utility bears some similarity to the Vickrey-Clarke-Groves mechanism.
The COIN method belongs to the larger field of reward shaping techniques. Reward
shaping has been productively applied to air traffic control (Tumer and Agogino,
2007), opportunistic spectrum access wireless communications (NoroozOliaee et al.,
2012) and coordinated, scalable robust multi-agent systems (Tumer, 2006). Another
reward shaping technique is to use a Kalman filter to estimate each agent’s own
contribution to the reward signal based on the assumption that the agent’s reward
signal is a linear sum of a useful reward signal and an irrelevant, random reward
(Chang et al., 2004). Like our methods, the COIN method and related reward shaping
techniques assume that the agents’ reward functions can be directly manipulated by
the system designer. Our method is to explicitly design a joint reward function that
results in a desirable Nash equilibrium while reward shaping techniques modify each
agents’ reward function so that the emergent behaviour of the agents maximises some
system-level reward function.

Boutilier (1999) considers a way of giving agents the ability to explicitly reason
about ‘coordination mechanisms’ for resolving sequential coordination problems
in cooperative multi-agent systems. By encoding the probabilities of coordination
and mis-coordination into the agents’ states (given some coordination mechanism in
each agent), the state-action values can be more accurately computed and the agents
can explicitly reason about coordination with the dynamic programming algorithm
that Boutilier describes. Rather than adjusting the agents’ learning algorithms, our
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approach is to induce coordination by designing a reward function for each agent
such that the resulting game has a single Nash equilibrium, eliminating the need for
the agents to select between multiple equilibria.

Agogino and Tumer (2008) present a method for visualising and analysing agent
rewards which can be used to speed up agent learning and enable coordination.
Agogino and Tumer explicitly measure the ‘factoredness’ of a reward function, or
the extent to which an agent’s reward function aligns its interests with some global
reward function, and the ‘learnability’ of a reward function, or the extent to which an
agent’s reward function depends on that agent’s own state. Agogino and Tumer help
system designers find better reward functions by demonstrating how to visualise the
factoredness and learnability of reward functions. While Agogino and Tumer are also
motivated by trying to develop better tools for reward design in multi-agent systems,
we take a different approach. We focus on algorithmic techniques for designing
rewards that achieve particular game-theoretic ends, with some interest in reward
learnability, rather on developing ways to analyse and visualise multi-agent reward
functions.

5.7 Conclusion

We describe a method for designing joint reward functions for stochastic games that
encode desirable sequential multi-agent behaviours. Given a set of desirable stationary
stochastic joint agent policies and a stochastic game without a reward function, our
method constructs a joint reward function that results in a desirable joint agent policy
as the unique Nash equilibrium of the resulting stochastic game. Therefore, our
method reduces the problem of designing reward functions for stochastic games to
identifying a desirable multi-agent behaviour. Our method builds on simpler methods
for designing rewards for Markov decision processes and for designing rewards for
normal form games. We formally prove that our methods are correct and we discuss
alternative techniques.

This chapter supports the thesis by providing a method for algorithmically designing
rewards for stochastic games, assuming that the set of desired behaviours is known.
While learning agents do not always converge to the Nash equilibrium, a unique Nash
equilibrium represents the fixed point in the field of influence that a reward function
exerts. Therefore, this chapter demonstrates a way to algorithmically design reward
functions to influence groups of learning agents toward desirable sequential joint
behaviours.
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Chapter 6

Conclusion

This dissertation comprises a number of novel contributions to human knowledge
that together demonstrate that:

Algorithmically designed reward functions can influence groups of learn-
ing agents toward measurable desired sequential joint behaviours.

These contributions to multi-agent systems and machine learning are as follows:

• In Chapter 3, we introduce a quantitative measure for turn-taking, ττ. We derive
the quantity of turn-taking present in groups of random agents, demonstrate
ττ on previously reported examples of emergent turn-taking and apply ττ to a
recorded human conversation.

• In Chapter 4, we define ‘medium access games,’ analyse these games and present
simulation results to demonstrate how to identify reward functions that are
conducive (or prohibitive) to the emergence of turn-taking in pairs of Q-learning
agents.

• In Chapter 5, we propose a method for designing reward functions for Markov
decision processes, normal form games and stochastic games that results in
a desirable predetermined unique Nash equilibrium (or optimal policy). We
formally prove that our methods are successful and show an example of algo-
rithmically designing a reward function to achieve a desired sequential joint
behaviour.

6.1 How it all fits together

The idea of designing reward functions to influence groups of learning agents towards
desired sequential joint behaviours is built on research in reinforcement learning,
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multi-agent systems, game theory and emergent phenomena. While an agent may
be a person or an animal, we focus on artificial agents that use machine learning
to maximise a scalar reward function. We suggest ways to measure and influence
sequential joint agent behaviours to address difficulties in designing the agents’ reward
functions in multi-agent reinforcement learning systems. Therefore, the thesis belongs
to the design agenda of multi-agent reinforcement learning (Gordon, 2007).

We demonstrate the thesis in three parts. In Chapter 3, we develop a metric for turn-
taking, one class of sequential joint agent behaviour. The thesis relates to measurable
behaviours in general; we pay special attention to turn-taking in order to present
a detailed, concrete example rather than presenting a more abstract analysis of the
general case of sequential joint behaviours. We validate our turn-taking metric by
analysing previously reported cases of emergent turn-taking and we demonstrate
our metric on a recorded human conversation. Chapter 3 supports the thesis by
demonstrating how to measure an example sequential joint behaviour, but, more
importantly, Chapter 3 lays the foundations for Chapter 4.

Chapter 4 continues the focus on turn-taking, and demonstrates how appropriate
reward functions can influence the sequential joint behaviour in pairs of learning
agents toward a desired behaviour. Chapter 4 introduces ‘medium access games’ to
model a class of situations where human and machine turn-taking may be a useful
joint sequential behaviour. We use extensive simulations to show that groups of
learning agents can be incentivised to produce turn-taking behaviour by reward
functions where the Nash equilibria of the resulting medium access games correspond
to joint policies that would produce turn-taking. Chapter 4 presents a methodology for
analysing the reward functions of multi-agent systems. We can use this methodology
to speed up searches for reward functions that result in desirable sequential joint
behaviours.

In Chapter 5, we focus on developing the methodology from Chapter 4 and we
introduce a method for designing reward functions for stochastic games that result
in unique Nash equilibria. In the process of developing a reward design method for
stochastic games, we introduce methods for designing reward functions for Markov
decision processes and normal form games. While Chapter 4 supports the thesis by
connecting reward functions to desired multi-agent behaviours, Chapter 5 presents
a way to algorithmically design reward functions that incentivise agents to produce
arbitrary desirable joint sequential behaviours.

Chapters 3–5 support the thesis with original research. The ideas in Chapters 3–5 are
internally supported by analysis, simulation and formal proofs. This dissertation as a
whole demonstrates the validity of the thesis, with particular focus on turn-taking in
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Chapters 3 and 4 while also addressing the general case of arbitrary sequential joint
behaviours in Chapter 5.

6.2 Discussion

The discussion sections of Chapters 3, 4 and 5 consider alternative approaches and
extensions of the ideas introduced in each chapter. In this section, we discuss the
significance and limitations of the work as a whole.

In some cases, if we knew what we wanted the agents to do, then we would not need
learning agents. However, learning agents are necessary in some situations even when
we thoroughly specify the desired behaviour of the agents. Sometimes the details of
a situation or environment change in such a way that the agents must change what
they do in order to maintain the same outcome. For example, if three identical robot
agents are tasked with cleaning a certain area and one robot breaks down, then the
other two robots might be able to succeed at the joint goal if they can adapt what they
do to their new situation.

In multi-agent systems, we often find that reward functions cannot completely control
agents and that agents do not always converge to the Nash equilibrium. Indeed, in
Chapter 4 we find that Q-learning agents sometimes do not converge to the Nash
equilibrium. However, the thesis does not claim that algorithmically designed reward
functions can completely control the behaviour of agents but rather that such reward
functions can influence agents towards desired behaviours. The conditions required
for convergence to the Nash equilibrium have been studied previously (Aumann and
Brandenburger, 1995; Mailath, 1998; Chen and Gazzale, 2004) and convergence is
an important goal for designers of multi-agent reinforcement learning algorithms
(Buşoniu et al., 2008). We are optimistic that the algorithms employed by future
machine learning agents will be more able to converge to Nash equilibrium than
present algorithms.

In some cases, we may have a global utility function, so all we need is for the agents
to maximise that function. There are existing methods for shaping agents’ reward
functions that make the agents maximise a global utility function (Wolpert et al., 1999;
Tumer, 2006; Tumer and Agogino, 2007; NoroozOliaee et al., 2012). In this dissertation,
we focus on those cases where the system designer is not endowed with a scalar global
reward function and cases where that global reward function cannot be efficiently
communicated to all the agents. In Chapter 4, we consider how to design local
reward functions that result in turn-taking as a system behaviour. Turn-taking may
be necessary to mediate communication between agents in some cases and therefore
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any knowledge of a global reward function would need to be transmitted between the
agents after they have learned turn-taking.

For Chapters 3 and 4, rather than approaching the general case of sequential joint
behaviour in an abstract sense, we have chosen to use a concrete example. Turn-
taking is a non-homogenous coordinated sequential joint behaviour that is intuitively
comprehensible, making it an ideal test case for general sequential joint behaviours.
Furthermore, turn-taking is an interesting behaviour in linguistics (Sacks et al., 1974;
Stivers et al., 2009), in emergent communication (Di Paolo, 2000; Iizuka and Ikegami,
2004) and in human-machine interaction (Turunen et al., 2006; Raux and Eskenazi,
2008; Chao and Thomaz, 2010, 2012). However, the thesis refers to sequential joint
behaviour in general, therefore Chapter 5 addresses the case of arbitrary sequential
joint behaviours.

Rather than developing complicated models, we study simpler models in more detail.
Simple models do not necessarily imply simple behaviour because the coupling
between many simple parts can result in complex behaviour. For example, the cellular
automaton known as Rule 110 is Turing complete (Cook, 2004). In Chapter 3, we
focus on developing a simple but usable metric for turn-taking rather than a general
metric. In Chapter 4, we focus on the aspects of human and machine interaction
that are most relevant to turn-taking in order to simplify our analysis and to make it
comprehensible. We ignore the possibility of partially observable states in Chapter 5
to simplify our methods and proofs. In each case, we focus on the details that we
deem most important to the situation.

There may exist ways to influence the sequential joint behaviour in groups of learning
agents even when the desired behaviour is not measurable. However, we have chosen
to limit the scope of the thesis to measurable behaviours. Our methodology addresses
the possibility of currently unmeasurable behaviours by suggesting the construction of
new metrics. In particular, we demonstrate how to quantify and measure turn-taking
with a simple metric.

6.3 Future work

The work presented in this dissertation opens a range of new research opportunities.
In Chapters 3, 4 and 5, we mention opportunities for future work that relate to
each chapter’s content. Here, we discuss future research directions that relate to the
dissertation as a whole. These directions are opportunities to broaden the research
that comprises this dissertation, opportunities to extend that research and possible
ways to apply that research.
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6.3.1 Opportunities to broaden

We could generalise the simple turn-taking metric ττ in a number of ways. The
resource allocation model used to compute the agents’ turn allocations considers that
collisions are equally bad, regardless of the number of agents that attempt to use
the shared resource at the same time. A resource allocation model that penalises
collisions based on the number of agents colliding might better fit applications with
large numbers of agents. As currently defined, ττ uses a fairness metric that focuses
on the agent with the smallest allocation. However, it might be more appropriate to
use a different fairness metric in situations with large numbers of agents where it is
likely that one of the agents might break and stop taking turns. In general, we may
want one agent to take more than its fair share of turns, so we could extend the metric
by weighting the agents allocations according to some predefined scheme.

Further research is required to understand why the predictors for turn-taking in
Chapter 4 worked as well as they did. Specifically, we do not have a good theoretical
explanation for why the ‘at least one policy of one Nash equilibrium’ predictor was
so successful. For some reason, a likely outcome observed in our simulations was that
one agent would learn its policy in the Nash equilibrium while the other agent learned
a different policy that was not part of the Nash equilibrium. We could investigate
a number of medium access games with slightly different rules in order to identify
those features of the multi-agent system that result in these deviations from the Nash
equilibrium.

Constructing a reward function for a stochastic game is an under-defined problem:
there exist many possible reward functions that result in a desired behaviour as the
unique Nash equilibrium of the game. Our method in Chapter 5 simply chooses one
possible reward function, without considering other possibilities. A system designer
might want the reward function to depend on some global action criteria. For example,
if at least one agent does some special action, then one reward function could be used,
but if no agent does that action, then another reward function could be used. It may
be possible to use such global action criteria to choose between the many possible
reward functions that result in a desirable action as the unique Nash equilibrium.
The method for designing rewards of stochastic games in Chapter 5 results in reward
functions where each agent values each state equally when all agents play the Nash
equilibrium. In some situations, a system designer may know that some states are
beneficial to his or her desired outcome. Perhaps we could extend the methods of
Chapter 5 to include information about which states the agents should value more
highly than others.
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6.3.2 Opportunities to extend

One useful tool for multi-agent system designers would be an automatic method for
sequential multi-agent behaviour metric design. We could use some of the methodol-
ogy of Chapter 3 in the context of automated metric design, such as comparisons with
the performance of random agents. Automated metric design is related to pattern
recognition (Theodoridis and Koutroumbas, 2009) and data mining (Witten and Frank,
2005). However, we may be able to use knowledge of when the agents took exploratory
moves in order to reduce the information content of the history of agent actions. We
could also use the policies that agents learn as summaries of their action histories. For
particularly challenging metrics, we could use a semi-automated human-in-the-loop
technique to learn human judgements.

In Chapter 5, we demonstrate our method for designing rewards for stochastic games
with a single example. One important area for future work is to experimentally
verify the learnability of the reward functions that our method in Chapter 5 produces.
This would involve developing a range of Markov decision processes, normal form
games and stochastic games and a range of desirable behaviours, then testing the
learnability of the reward functions that our methods produce by running simulations
with a range of multi-agent reinforcement learning algorithms. Because there are
many different games, potentially desirable behaviours and learning algorithms, the
simulations may be computationally expensive and the analysis and interpretation of
the results may be challenging.

In addition to performing systematic testing, we plan to apply our reward design
methods to constructing multi-agent musical systems to generate musical rhythms.
Musical rhythms are related to turn-taking in conversation (Wilson and Wilson, 2005)
and there are metrics that relate to musical rhythms (Toussaint, 2004). Some music
has hierarchical structure so musical agents may need to have hierarchical learning
algorithms, such as MAX-Q (Dietterich, 1998). Hierarchical learning algorithms often
ignore information and this may affect whether or not agents that use hierarchical
algorithms can converge to a Nash equilibrium.

The algorithms in Chapter 5 use graphs with certain properties to construct reward
functions for intransitive normal form games. Appendix A presents algorithms that
generate graphs; we hypothesise that these algorithms produce graphs with the
required properties but this has not been formally proven. We intend to study those
graph generator algorithms further and prove that they produce the correct output.

We focus on the agents’ reward functions. However, other aspects of multi-agent
systems can also be flexible. Our methods for designing reward functions could be
married to new methods for designing system states, state transition functions, agent
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action sets and meta-learning algorithms to design agents for a unified algorithmic
method for multi-agent reinforcement learning system design. One challenge would
be to create a unified system design method that maintains sufficient generality but is
detailed enough to be practically useful.

6.3.3 Possible applications

The turn-taking metric ττ introduced in Chapter 3 could be useful in improving
human-machine interaction, for example in spoken dialog systems (Raux and Eskenazi,
2008), and also in improving human-human interactions. For example, people with
autism might benefit from real-time quantitative feedback on the quality of their
turn-taking in social settings. Automated conversation quality analysis might also
provide useful feedback for professionals and salespeople who want to improve the
outcomes of their social interactions.

Biological conservation efforts relate to time-varying joint outcomes for groups of
animals. Unique ecological environments such as those found in New Zealand or
Australia present a number of challenges in biology and conservation. In some
cases, scientific observations of empirical animal behaviour data have been fitted to
turn-taking models (Harcourt et al., 2010) or game-theoretic models (Sinervo and
Lively, 1996). The research in Chapters 4 and 5 suggests a way to create models
for the underlying incentives that generate particular time-varying joint outcomes
in multi-agent systems. By creating theoretical models for animal behaviours and
outcomes, we may be able to better inform conservationists and policy makers.

The reward design techniques in Chapters 4 and 5 suggest ways to guide coordination
in heterogeneous groups of agents. We could apply these techniques to design reward
functions for robots that would lead toward desirable behaviours when the robots
interact with people. Effective urban search and rescue robots would be invaluable
in emergency situations, like the destructive 2011 earthquake in Christchurch, New
Zealand, but such robot systems face theoretical and practical challenges (Davids,
2002; Carpin et al., 2007). We could use our reward design methods for planning the
motions of autonomous urban search and rescue robots.

6.4 Final summary

This dissertation presents an original body of research in multi-agent systems and
machine learning that makes a number of contributions to the human knowledge of
measuring and influencing sequential joint agent behaviours: we propose a metric for
turn-taking and demonstrate its functioning; we define and analyse medium access
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games then present simulation results that demonstrate how to predict the emergence
of turn-taking in pairs of Q-learning agents; and we introduce a method for designing
rewards for stochastic games that result in desirable unique Nash equilibria and prove
that our method is successful. We ground our research in previous work, address
potential criticisms and suggest a number of possibilities for future work. Taken as a
whole, this dissertation demonstrates the thesis:

Algorithmically designed reward functions can influence groups of learn-
ing agents toward measurable desired sequential joint behaviours.
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Appendix A

Graph Generator Algorithms

In Chapter 5, we present algorithms that transform graphs with particular properties
into intransitive normal form games. Here, we present Algorithm A.1, which gener-
ates graphs with the requisite properties for the two-agent case and Algorithm A.2,
which generates graphs for the multi-agent case. Note that Quintas’ work on con-
structing normal form games for two agents suggests a particular pair of functions
that correspond to the output of Algorithm A.1 (Quintas, 1988). We conjecture that
these algorithms function correctly, but we leave proofs to future work. The truth
of the thesis statement does not depend on these particular algorithms. They are
presented as potentially useful companions to the algorithms in Chapter 5 but are
kept separate to maintain the focus of Chapter 5.
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Input : A set of actions An for each agent n ∈ {1, 2}, assuming that |An| > 1
for all n ∈ N .

Output: A directed bipartite graph, G, with vertices V(G) =
⋃

n∈N An and
with an arc to each vertex and an arc from each vertex such that the
graph has a Hamiltonian cycle.

Let G ← (V, E) be a graph with arcs E← ∅ and vertices V ← ⋃
n∈N An.1

Let Ωn : An → {1, 2, 3, . . . , |An|} be an arbitrary bijective ordering of agent n’s2

actions, for all n ∈ N .
For each a1 ∈ A1 do3

Let i← Ω1(a1).4

Find a2 such that Ω2(a2) = i.5

Create an arc from a1 to a2 and add the arc to E.6

For each a2 ∈ A2 do7

Let i← Ω2(a2) + 1.8

If i > |A1| then9

Set i← 1.10

Find a1 such that Ω1(a1) = i.11

Create an arc from a2 to a1 and add the arc to E.12

Return G.13

Algorithm A.1: One possible method for constructing a directed bipartite
graph with a Hamiltonian cycle, given a set of actions for each of two agents.
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Input : A set of joint actions A, assuming that Eq. (5.30) on p. 100 is satisfied
and, without loss of generality, assuming that
|A1| ≥ |A2| ≥ . . . ≥ |A|N ||.

Output: A directed |N |-partite graph, G, with vertices V(G) =
⋃

n∈N An and
with an arc to each vertex and an arc from each vertex such that the
graph has a Hamiltonian cycle.

Let G ← (V, E) be a graph with arcs E← ∅ and vertices V ← ⋃
n∈N An.1

Let remaining(1) be the number of vertices in A1 that have no arcs from them.2

Let remaining(¬1) be the number of vertices in V(G) but not in A1 that have3

no arcs from them.
Set start← an arbitrary vertex in |A1|.4

Set current← start.5

While remaining(¬1) > remaining(1) do6

If remaining(¬1) = 1 then7

next← start8

Else if current 6∈ A1 and remaining(¬1) = remaining(1) + 1 then9

next← an arbitrary vertex in A1 that has no arc from it.10

Else11

Find n such that current ∈ An.12

n′ ← (n + 1) mod |N |13

While every vertex in An′ has an arc from it do14

n′ ← (n′ + 1) mod |N |15

next← an arbitrary vertex in An′ that has no arc from it.16

Create an arc from current to next and add the arc to E.17

current← next.18

Update the values of remaining(1) and remaining(¬1).19

While remaining(1) > 0 do20

next← an arbitrary vertex in V(G) but not in A1 that has no arc from it.21

Create an arc from current to next and add the arc to E.22

current← next.23

If remaining(1) = 1 then24

next← start.25

Else26

next← an arbitrary vertex in A1 that has no arc from it.27

Create an arc from current to next and add the arc to E.28

current← next.29

Update the values of remaining(1) and remaining(¬1).30

Return G.31

Algorithm A.2: One possible method for constructing a directed |N |-partite
graph with a Hamiltonian cycle, given a set of actions for each agent in the set
of agents, N .
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